Open Access. Powered by Scholars. Published by Universities.®

Pharmacology, Toxicology and Environmental Health Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicinal-Pharmaceutical Chemistry

Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 49

Full-Text Articles in Pharmacology, Toxicology and Environmental Health

An Insight Into The Physicochemical, Drug-Likeness, Pharmacokinetics And Toxicity Profile Of Kigelia Africana (Lam) Bioactive Compounds, Sulyman Olalekan Ibrahim, Halimat Yusuf Lukman, Marili Funmilayo Zubair, Oluwagbemiga Tayo Amusan, Fatimah Ronke Abdulkadri, Bashir Lawal, Lateefat Bello Abdulfatah, Olubunmi Atolani Nov 2023

An Insight Into The Physicochemical, Drug-Likeness, Pharmacokinetics And Toxicity Profile Of Kigelia Africana (Lam) Bioactive Compounds, Sulyman Olalekan Ibrahim, Halimat Yusuf Lukman, Marili Funmilayo Zubair, Oluwagbemiga Tayo Amusan, Fatimah Ronke Abdulkadri, Bashir Lawal, Lateefat Bello Abdulfatah, Olubunmi Atolani

Al-Bahir Journal for Engineering and Pure Sciences

Kigelia africana plant is multipurpose plant whose therapeutic potential has been thoroughly investigated. The physicochemical, solubilities, ADMET, pharmacological, and drug-like properties of this plant have not been reported in details. This study makes use of the information that is currently known on the chemical make-up of the plant to forecast its overall toxicity as well as the potential for the phytochemicals it contains to be employed in medication discovery. The study also employed free web servers for the lipophilicity, water solubility, drug-likness, bioavailability score, medicinal chemistry and toxicological profiling of the compounds of K. africana. Artemether, a known antimalaria …


Development Of An Lcms Method To Detect And Quantify Curcumin In A Novel Oral Formulation Of Turmeric, Brandon Renninger Feb 2023

Development Of An Lcms Method To Detect And Quantify Curcumin In A Novel Oral Formulation Of Turmeric, Brandon Renninger

Annual Research Symposium

No abstract provided.


Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore Dec 2022

Designing And Synthesizing A Warhead-Fragment Inhibitory Ligand For Ivyp1 Through Fragment-Based Drug Discovery, Samuel Moore

Symposium of Student Scholars

Fragment-based drug discovery (FBDD) is a powerful tool for developing anticancer and antimicrobial agents. Within this, magnetic resonance spectroscopy (NMR) provides a comprehensive qualitative and quantitative approach to screening and validating weak and robust binders with targeted proteins, making NMR among the most attractive strategies in FBDD. Inhibitor of vertebrate lysozyme (Ivyp1) of P. aeruginosa serves as an excellent target because of its active cellular location and implications in clinical prognosis for cystic fibrosis and immunocompromised patients. This study uses current NMR and biophysical techniques to develop a covalent, fragment-linked warhead inhibitor for Ivyp1 through synthetic methods, warhead linking, and …


Identification And Quantitation Of Unspecified Impurities Discovered In Novel Oral Irinotecan By Lc-Ms/Ms And Uhplc, Laura B. Miller Aug 2022

Identification And Quantitation Of Unspecified Impurities Discovered In Novel Oral Irinotecan By Lc-Ms/Ms And Uhplc, Laura B. Miller

Forensic Science Master's Projects

Irinotecan is a cancer medication approved for medical use in the United States in 1996. It is currently administered via intravenous injection. However, intravenous dosing has disadvantages such as requirement of administration by a trained professional in a medical facility, possible severe adverse effects, pain at the injection site, and possible hemolysis if injected too rapidly. Previously oral administration was not feasible because the p-glycoprotein (p-GP) on the cell membrane of stomach cells acts as a defense mechanism against harmful substances by pumping the irinotecan back into the intestinal lumen for excretion. With the discovery of the p-GP inhibitor encequidar …


Fast Photochemical Oxidation And Footprinting Of Proteins Via Trifluoromethyl Radical Chemistry, Elaine Morrow Apr 2022

Fast Photochemical Oxidation And Footprinting Of Proteins Via Trifluoromethyl Radical Chemistry, Elaine Morrow

Honors Theses

Fast photochemical oxidation of proteins (FPOP) is a useful tool in proteomics because of the ability for modifications to occur on the scale of microseconds which reduces the modifications to tertiary and quaternary structure allowing for more accurate labeling of the protein. Labels for FPOP are generated from various radicals in our experiments which include hydroxyl radicals and trifluoromethyl radicals. Hydroxyl radicals are easily generated by using an excimer laser (KrF laser, 248 nm) or a UV flash lamp (as a part of the Fox™ System) by the photolysis of hydrogen peroxide. Trifluoromethyl radicals, however, need hydroxyl radicals to be …


The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen Apr 2022

The Development Of Inhibitors For Sars-Cov-2 Orf8, My Thanh Thao Nguyen

CSB and SJU Distinguished Thesis

An unexpected outbreak of SARS-CoV-2 caused a worldwide pandemic in 2020. Many repurposed drugs were tested, but there are currently only three FDA approved antivirals (Merck’s antiviral Molnupiravir, Pfizer’s antiviral Paxlovid, and Remdisivir).1 Most of the antiviral drugs tested SARS-CoV-2 main protease and RNA-dependent RNA polymerase. However, it is important to explore different drug targets of SARS-CoV-2 to prepare for the virus mutations of the future. This research looks at an alternative approach in which SARSCoV- 2 Open Reading Frame 8 (ORF8), which has been shown to be a rapidly evolving hypervariable gene, was chosen to be the protein of …


Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie Nov 2021

Aptamer-Based Voltammetric Biosensing For The Detection Of Codeine And Fentanyl In Sweat And Saliva, Rosa Lashantez Cromartie

FIU Electronic Theses and Dissertations

Despite the many governmental and medicinal restrictions created to combat the opioid epidemic in the United States, opioid abuse and overdose rates continue to rise. The development of an aptamer-based voltammetric sensor and biosensor is described in this dissertation. The aim was to develop a low-cost, sensitive, and specific aptamer-based sensor for on-site, label-free determination of codeine and fentanyl in biological fluids. To do this, the surfaces of screen-printed carbon electrodes (SPCE) were modified with gold nanoparticles (AuNPs), followed by the addition of single-stranded DNA aptamers. These were covalently bound to the electrode surface. Operations of the sensors were collected …


Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence Jan 2021

Nebulizer-Based Systems To Improve Pharmaceutical Aerosol Delivery To The Lungs, Benjamin M. Spence

Theses and Dissertations

Combining vibrating mesh nebulizers with additional new technologies leads to substantial improvements in pharmaceutical aerosol delivery to the lungs across therapeutic administration methods. In this dissertation, streamlined components, aerosol administration synchronization, and/or Excipient Enhanced Growth (EEG) technologies were utilized to develop and test several novel devices and aerosol delivery systems. The first focus of this work was to improve the poor delivery efficiency, e.g., 3.6% of nominal dose (Dugernier et al. 2017), of aerosolized medication administration to adult human subjects concurrent with high flow nasal cannula (HFNC) therapy, a form of continuous-flow non-invasive ventilation (NIV). The developed Low-Volume Mixer-Heater (LVMH) …


Melanogenesis, Its Regulatory Process, And Insights On Biomedical, Biotechnological, And Pharmacological Potentials Of Melanin As Antiviral Biochemical, Toluwase Hezekiah Fatoki, Omodele Ibraheem, Catherine Joke Adeseko, Boluwatife Lawrence Afolabi, Daniel Uwaremhevho Momodu, David Morakinyo Sanni, Jesupemi Mercy Enibukun, Ibukun Oladejo Ogunyemi, Akinwunmi Oluwaseun Adeoye, Harriet U. Ugboko, Amoge Chidinma Ogu, Abiodun Samuel Oyedele, Adejoju Omodolapo Adedara, Abiodun Joseph Jimoh, Oluwakemi Ruth Ogundana, Oritsetimeyin Eworitse Ebosa Dec 2020

Melanogenesis, Its Regulatory Process, And Insights On Biomedical, Biotechnological, And Pharmacological Potentials Of Melanin As Antiviral Biochemical, Toluwase Hezekiah Fatoki, Omodele Ibraheem, Catherine Joke Adeseko, Boluwatife Lawrence Afolabi, Daniel Uwaremhevho Momodu, David Morakinyo Sanni, Jesupemi Mercy Enibukun, Ibukun Oladejo Ogunyemi, Akinwunmi Oluwaseun Adeoye, Harriet U. Ugboko, Amoge Chidinma Ogu, Abiodun Samuel Oyedele, Adejoju Omodolapo Adedara, Abiodun Joseph Jimoh, Oluwakemi Ruth Ogundana, Oritsetimeyin Eworitse Ebosa

Chemistry Student Research

Melanin is s most widely distributed pigment and is found in bacteria, fungi, plants, and animals. Melanogenesis is under complex regulatory control by multiple agents interacting through pathways activated by hormonal and receptor-dependent and -independent mechanisms. There are about 20 genes that are involved in the biochemical pathway of melanogenesis and its regulation, which include: tyrosinase, microphthalmia-associated transcription factor, melanocortin1 receptor, adenylate cyclase, protein kinase A. Human melanogenesis regulatory proteins such as MAPK1, CREB3, and CREBP, have binary interaction with the protein of herpesvirus, hepatitis C virus, Human immunodeficiency virus type 1, Simian virus 40, and Human adenovirus A and …


Isolation, Structure Elucidation, And Synthesis Of Natural Products From Marine Cyanobacteria, Keren Solomon Aug 2020

Isolation, Structure Elucidation, And Synthesis Of Natural Products From Marine Cyanobacteria, Keren Solomon

Electronic Theses and Dissertations

This thesis describes the isolation, structure elucidation, and synthesis of natural products from marine cyanobacteria. A crude extract from a cyanobacterium collected in Curacao showed selective affinity for the dopamine D5 receptor in a screen against a panel of CNS receptors. Due to the high similarity of the D5 and D1 receptor, to date there are no known ligands that differentiate them. Attempts to purify the compound responsible for this affinity led to the isolation of the known compound caylobolide A. A second extract from a cyanobacterium collected in Panama underwent bioassay-guided fractionation and yielded the novel …


Computational Chemistry - Ulk 101, Michaela Montpas Apr 2020

Computational Chemistry - Ulk 101, Michaela Montpas

Scholar Week 2016 - present

Autophagy is a process that generates the necessary building components for cells by cytoplasmic breakdown of unnecessary materials (Martin, Celano, Solitro, Gunaydin, Scott, et. al., 2018). This is a survival technique for cells in times of stress, especially during periods of nutrient starvation. Cancer cells, unfortunately, benefit from this process due to their ability to flourish in nutrient-starved environments, becoming resistant to therapy. The primary protein in mammals responsible for this process is a serine/threonine kinase called ULK 1 (unc-51 like autophagy initiating kinase 1). As such, inhibitors of ULK 1 can be used in cancer therapies in order to …


Computational Studies And Design Of Pparγ And Glut1 Inhibitors, Suliman Almahmoud Dec 2019

Computational Studies And Design Of Pparγ And Glut1 Inhibitors, Suliman Almahmoud

Theses & Dissertations

The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent transcription factor of the nuclear receptor superfamily that controls the expression of a variety of genes involved in fatty acid metabolism, adipogenesis, and insulin sensitivity. PPARγ is a target for insulin-sensitizing drugs, and it plays a significant function in prostate cancer. PPARγ antagonists have anti-proliferative effects in a broad range of hematopoietic and epithelial cell lines. The ligand binding domain (LBD) of PPARγ is large and has orthosteric and allosteric binding sites. Several PPARγ-ligand co-crystal structures show two bound molecules, one to the orthosteric pocket and a second to the allosteric …


Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber Jan 2019

Toward An Enzyme-Coupled, Bioorthogonal Platform For Methyltransferases: Probing The Specificity Of Methionine Adenosyltransferases, Tyler D. Huber

Theses and Dissertations--Pharmacy

Methyl group transfer from S-adenosyl-l-methionine (AdoMet) to various substrates including DNA, proteins, and natural products (NPs), is accomplished by methyltransferases (MTs). Analogs of AdoMet, bearing an alternative S-alkyl group can be exploited, in the context of an array of wild-type MT-catalyzed reactions, to differentially alkylate DNA, proteins, and NPs. This technology provides a means to elucidate MT targets by the MT-mediated installation of chemoselective handles from AdoMet analogs to biologically relevant molecules and affords researchers a fresh route to diversify NP scaffolds by permitting the differential alkylation of chemical sites vulnerable to NP MTs that are unreactive to …


5-Ht2b Receptor-Mediated Cardiac Valvulopathy, Pallavi Nistala Jan 2018

5-Ht2b Receptor-Mediated Cardiac Valvulopathy, Pallavi Nistala

Theses and Dissertations

5-HT2B receptor agonism causes cardiac valvulopathy, a condition characterized by thickening of the heart valves and as a result, regurgitation of blood within the heart. The anti-obesity drug fenfluramine, which was originally prescribed as an anorectic, was withdrawn from the market due to causing cardiac valvulopathy. Fenfluramine, after metabolism by N-dealkylation, produces the metabolite norfenfluramine, which acts as a more potent valvulopathogen. The same was seen with MDMA (ecstasy), a popular drug of abuse, which is metabolized by N-dealkylation to produce MDA, a more potent valvulopathogen. Glennon and co-workers. studied a series of 2,5-dimethoxy-4- substituted phenylisopropylamines (DOX type) hallucinogens …


The Forensic Characterization Of Bacterial And Fungal Organisms In Traditional Chinese Medicine, Julia Grzymkowski, Christopher J. Ehrhardt, Justin L. Poklis, Michelle R. Peace Jan 2018

The Forensic Characterization Of Bacterial And Fungal Organisms In Traditional Chinese Medicine, Julia Grzymkowski, Christopher J. Ehrhardt, Justin L. Poklis, Michelle R. Peace

Undergraduate Research Posters

There has been an increase in use of Traditional Chinese Medicine (TCM) in the United States because they are less expensive and believed to be more effective with less adverse effects in comparison to traditional pharmaceutics. Therefore, sales have increased in the US, despite articles and case studies demonstrating the dangers, such as injury and death, related to TCM, stemming from improper labelling, toxic contaminants, and, in some cases, the presence of pathogenic bacteria. The aim of this study was to perform a survival experiment to demonstrate the importance of proper herbal brewing technique and to conduct a molecular and …


Development Of Neurotensin-Based Radiopharmaceuticals For Neurotensin-Receptor-1-Positive Tumors Targeting, Yinnong Jia May 2017

Development Of Neurotensin-Based Radiopharmaceuticals For Neurotensin-Receptor-1-Positive Tumors Targeting, Yinnong Jia

Theses & Dissertations

The neurotensin receptor 1 (NTR1) is overexpressed in many cancers, due to its role as a growth pathway. These NTR1-positive cancers include pancreatic, colon, prostate and breast cancers. In the radiopharmaceutical field, the overexpression of NTR1 in cancer has prompted the development of NTR1-targeted diagnostics and therapeutics. The neurotensin (NT) peptide exhibits low nanomolar affinity for NTR1 and has been the paradigm for NTR1-targeted agents. Since the 1980’s, radiolabeled NT analogs have been developed and evaluated for targeting NTR1-positive cancers. Since native NT is rapidly degraded in vivo by a variety of peptidases, a tremendous amount of effort has been …


Discovery Of Thienoquinolone Derivatives As Selective And Atp Non-Competitive Cdk5/P25 Inhibitors By Structure-Based Virtual Screening, Arindam Chatterjee, Stephen J. Cutler, Robert J. Doerksen, Ikhlas A. Khan, John S. Williamson Mar 2017

Discovery Of Thienoquinolone Derivatives As Selective And Atp Non-Competitive Cdk5/P25 Inhibitors By Structure-Based Virtual Screening, Arindam Chatterjee, Stephen J. Cutler, Robert J. Doerksen, Ikhlas A. Khan, John S. Williamson

John S. Williamson

Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer’s disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening workflow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2- …


Feasibility Of Laser-Induced Breakdown Spectroscopy (Libs) As An At-Line Validation Tool For Calcium Determination In Infant Formula, Xavier Cama-Moncunill, Maria Markiewicz-Keszycka, Yash Dixit, Raquel Cama-Moncunill, Maria Piedad Casado-Gavalda, Patrick J. Cullen, Carl Sullivan Jan 2017

Feasibility Of Laser-Induced Breakdown Spectroscopy (Libs) As An At-Line Validation Tool For Calcium Determination In Infant Formula, Xavier Cama-Moncunill, Maria Markiewicz-Keszycka, Yash Dixit, Raquel Cama-Moncunill, Maria Piedad Casado-Gavalda, Patrick J. Cullen, Carl Sullivan

Articles

In this study, a 150 mJ laser-induced breakdown spectroscopy (LIBS) system was assessed to determine calcium content in infant formula (IF) samples. LIBS is a promising emission spectroscopic technique for elemental analysis, which offers advantages over conventional methods such as real-time analyses, little to no sample preparation and ease of use. The aim of this work was to evaluate the feasibility of LIBS as an at-line tool for IF manufacturing. To this end, IF mixtures with varying content of calcium were prepared over a range (approx. 1.5–7 mg/g of calcium) selected to be in conformity with the guidelines provided by …


Structural Dependence Of The In Vitro Cytotoxicity, Oxidative Stress And Uptake Mechanisms Of Poly(Propylene Imine) Dendritic Nanoparticles, Humza Khalid, Sourav Prasanna Mukherjee, Luke O'Neill, Hugh Byrne Feb 2016

Structural Dependence Of The In Vitro Cytotoxicity, Oxidative Stress And Uptake Mechanisms Of Poly(Propylene Imine) Dendritic Nanoparticles, Humza Khalid, Sourav Prasanna Mukherjee, Luke O'Neill, Hugh Byrne

Articles

The in vitro cytotoxic and intracellular oxidative stress responses to exposure to poly (propylene imine) (PPI) dendritic nanoparticles of increasing generation (number of repeated branching cycles) (G0-G4) were assessed in an immortal non-cancerous human keratinocyte cell-line (HaCaT). Confocal fluorescence microscopy with organelle staining was used to explore the uptake and intracellular trafficking mechanisms. A generation and dose dependent cytotoxic response was observed, increasing according to generation and therefore number of surface amino groups. A comparison of the cytotoxic response of G4 PPI and the related G4 Poly (amido amine) dendrimer indicates that the PPI with the same number of surface …


The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer Jan 2016

The Ssdna Mutator Apobec3a Is Regulated By Cooperative Dimerization, Markus-Frederik Bohn, Shivender Shandilya, Tania Silvas, Ellen Nalivaika, Takahide Kouno, Brian Kelch, Sean Ryder, Nese Yilmaz, Mohan Somasundaran, Celia Schiffer

Celia A. Schiffer

Deaminase activity mediated by the human APOBEC3 family of proteins contributes to genomic instability and cancer. APOBEC3A is by far the most active in this family and can cause rapid cell death when overexpressed, but in general how the activity of APOBEC3s is regulated on a molecular level is unclear. In this study, the biochemical and structural basis of APOBEC3A substrate binding and specificity is elucidated. We find that specific binding of single-stranded DNA is regulated by the cooperative dimerization of APOBEC3A. The crystal structure elucidates this homodimer as a symmetric domain swap of the N-terminal residues. This dimer interface …


Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo Jan 2016

Structure Of The Vif-Binding Domain Of The Antiviral Enzyme Apobec3g, Takahide Kouno, Elizabeth Luengas, Megumi Shigematsu, Shivender Shandilya, Jingying Zhang, Luan Chen, Mayuko Hara, Celia Schiffer, Reuben Harris, Hiroshi Matsuo

Celia A. Schiffer

The human APOBEC3G (A3G) DNA cytosine deaminase restricts and hypermutates DNA-based parasites including HIV-1. The viral infectivity factor (Vif) prevents restriction by triggering A3G degradation. Although the structure of the A3G catalytic domain is known, the structure of the N-terminal Vif-binding domain has proven more elusive. Here, we used evolution- and structure-guided mutagenesis to solubilize the Vif-binding domain of A3G, thus permitting structural determination by NMR spectroscopy. A smaller zinc-coordinating pocket and altered helical packing distinguish the structure from previous catalytic-domain structures and help to explain the reported inactivity of this domain. This soluble A3G N-terminal domain is bound by …


Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick Jan 2016

Simultaneously Targeting The Ns3 Protease And Helicase Activities For More Effective Hepatitis C Virus Therapy, Jean Ndjomou, M Corby, Noreena Sweeney, Alicia Hanson, Cihan Aydin, Akbar Ali, Celia Schiffer, Kelin Li, Kevin Frankowski, Frank Schoenen, David Frick

Celia A. Schiffer

This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety …


Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco Jan 2016

Structural Basis For Mutation-Induced Destabilization Of Profilin 1 In Als, Sivakumar Boopathy, Tania Silvas, Maeve Tischbein, Silvia Jansen, Shivender Shandilya, Jill Zitzewitz, John Landers, Bruce Goode, Celia Schiffer, Daryl Bosco

Celia A. Schiffer

Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral sclerosis (ALS); however, the pathological mechanism of PFN1 in this fatal disease is unknown. We demonstrate that ALS-linked mutations severely destabilize the native conformation of PFN1 in vitro and cause accelerated turnover of the PFN1 protein in cells. This mutation-induced destabilization can account for the high propensity of ALS-linked variants to aggregate and also provides rationale for their reported loss-of-function phenotypes in cell-based assays. The source of this destabilization is illuminated by the X-ray crystal structures of several PFN1 proteins, revealing an expanded cavity near the protein core of the …


Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler Jan 2016

Inhibition Of Apobec3g Activity Impedes Double-Stranded Dna Repair, Ponnandy Prabhu, Shivender Shandilya, Elena Britan-Rosich, Adi Nagler, Celia Schiffer, Moshe Kotler

Celia A. Schiffer

The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to …


Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer Jan 2016

Rediii: A Pipeline For Automated Structure Solution, Markus-Frederik Bohn, Celia Schiffer

Celia A. Schiffer

High-throughput crystallographic approaches require integrated software solutions to minimize the need for manual effort. REdiii is a system that allows fully automated crystallographic structure solution by integrating existing crystallographic software into an adaptive and partly autonomous workflow engine. The program can be initiated after collecting the first frame of diffraction data and is able to perform processing, molecular-replacement phasing, chain tracing, ligand fitting and refinement without further user intervention. Preset values for each software component allow efficient progress with high-quality data and known parameters. The adaptive workflow engine can determine whether some parameters require modifications and choose alternative software strategies …


Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski Jan 2016

Modulation Of Hiv Protease Flexibility By The T80n Mutation, Hao Zhou, Shangyang Li, John Badger, Ellen Nalivaika, Yufeng Cai, Jennifer Foulkes-Murzycki, Celia Schiffer, Lee Makowski

Celia A. Schiffer

The flexibility of HIV protease (HIVp) plays a critical role in enabling enzymatic activity and is required for substrate access to the active site. While the importance of flexibility in the flaps that cover the active site is well known, flexibility in other parts of the enzyme is also critical for function. One key region is a loop containing Thr 80, which forms the walls of the active site. Although not situated within the active site, amino acid Thr80 is absolutely conserved. The mutation T80N preserves the structure of the enzyme but catalytic activity is completely lost. To investigate the …


A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom Jan 2016

A Direct Interaction With Rna Dramatically Enhances The Catalytic Activity Of The Hiv-1 Protease In Vitro, Marc Potempa, Ellen Nalivaika, Debra Ragland, Sook-Kyung Lee, Celia Schiffer, Ronald Swanstrom

Celia A. Schiffer

Though the steps of human immunodeficiency virus type 1 (HIV-1) virion maturation are well documented, the mechanisms regulating the proteolysis of the Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) remain obscure. One proposed mechanism argues that the maturation intermediate p15NC must interact with RNA for efficient cleavage by the PR. We investigated this phenomenon and found that processing of multiple substrates by the HIV-1 PR was enhanced in the presence of RNA. The acceleration of proteolysis occurred independently from the substrate's ability to interact with nucleic acid, indicating that a direct interaction between substrate and RNA is not …


A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon Jan 2016

A Balance Between Inhibitor Binding And Substrate Processing Confers Influenza Drug Resistance, Li Jiang, Ping Liu, Claudia Bank, Nicholas Renzette, Kristina Prachanronarong, L. Yilmaz, Daniel Caffrey, Konstantin Zeldovich, Celia Schiffer, Timothy Kowalik, Jeffrey Jensen, Robert Finberg, Jennifer Wang, Daniel Bolon

Celia A. Schiffer

The therapeutic benefits of the neuraminidase (NA) inhibitor oseltamivir are dampened by the emergence of drug resistance mutations in influenza A virus (IAV). To investigate the mechanistic features that underlie resistance, we developed an approach to quantify the effects of all possible single-nucleotide substitutions introduced into important regions of NA. We determined the experimental fitness effects of 450 nucleotide mutations encoding positions both surrounding the active site and at more distant sites in an N1 strain of IAV in the presence and absence of oseltamivir. NA mutations previously known to confer oseltamivir resistance in N1 strains, including H275Y and N295S, …


Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer Jan 2016

Structural And Thermodynamic Effects Of Macrocyclization In Hcv Ns3/4a Inhibitor Mk-5172, Djade Soumana, Nese Yilmaz, Kristina Prachanronarong, Cihan Aydin, Akbar Ali, Celia Schiffer

Celia A. Schiffer

Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound …


Hybrid Computational Toxicology Models For Regulatory Risk Assessment, Prachi Pradeep Apr 2015

Hybrid Computational Toxicology Models For Regulatory Risk Assessment, Prachi Pradeep

Dissertations (1934 -)

Computational toxicology is the development of quantitative structure activity relationship (QSAR) models that relate a quantitative measure of chemical structure to a biological effect. In silico QSAR tools are widely accepted as a faster alternative to time-consuming clinical and animal testing methods for regulatory risk assessment of xenobiotics used in consumer products. However, different QSAR tools often make contrasting predictions for a new xenobiotic and may also vary in their predictive ability for different class of xenobiotics. This makes their use challenging, especially in regulatory applications, where transparency and interpretation of predictions play a crucial role in the development of …