Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Molecular and Cellular Neuroscience

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska May 2023

Validating A New In Vivo Model To Study Als, Izabela J. Cimachowska

Student Theses and Dissertations

Buildup of oxidative stress and mitochondrial dysfunction are well known characteristics of both sporadic and hereditary amyotrophic lateral sclerosis (ALS). While both forms of the disease seem to arise from common cellular dysfunction, the genetic disease is studied to a much greater extent. Engineering novel animal models of the sporadic form of the disease is crucial for development of druggable targets to treat ALS and understand the underlying mechanisms. Interestingly, accumulation of oxidative stress by exacerbated emission of reactive oxygen species (ROS) from presynaptic mitochondria is a hallmark of both hereditary and sporadic ALS. Previous work by our laboratory showed …


Genetic Determinants Of Primary Nociceptor Sensitivity In Drosophila Melanogaster, Christine Hale Aug 2022

Genetic Determinants Of Primary Nociceptor Sensitivity In Drosophila Melanogaster, Christine Hale

Electronic Theses and Dissertations

Abnormal pain affects ~50 million adults nationwide. With many of the current treatment options for chronic pain, such as opioid analgesics, carrying side effects such as the threat for addiction, research into safer and more effective options for chronic pain relief is crucial. Abnormal alterations in nociceptive sensitivity, which is the sensitivity of peripheral sensory neurons that detect noxious stimuli, can underlie, and perpetuate chronic pain. However, much is still unknown about the mechanism of how these abnormal alterations in sensitivity occur. To help elucidate genetic components controlling nociceptive sensitivity, the Drosophila melanogaster larval nociception model has been used …


Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon Feb 2020

Mushroom Body-Specific Gene Regulation By The Swi/Snf Chromatin Remodeling Complex, Kevin Cj Nixon

Electronic Thesis and Dissertation Repository

Over the lifetime of an organism, neurons must establish, remodel, and maintain precise connections in order to form neural circuits that are required for proper nervous system functioning. Disruptions in these processes can lead to neurodevelopmental disorders such as intellectual disability (ID) and autism spectrum disorder. Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex have been implicated in ID, yet the role of this complex in neurons is poorly understood. In this project, I established cell-type specific methods to examine the effect of SWI/SNF subunit knockdowns on gene transcription and chromatin structure in the memory-forming neurons of …


Glial Cell Mechanisms Regulate Alcohol Sedation In Drosophila Melanogaster, Kristen M. Lee Jan 2019

Glial Cell Mechanisms Regulate Alcohol Sedation In Drosophila Melanogaster, Kristen M. Lee

Theses and Dissertations

Approximately 16 million people in America are diagnosed with Alcohol Use Disorder (AUD) but no efficacious medical treatments exist. Alcohol-related behaviors can be studied in model organisms, and changes in these behaviors can be correlated with either (i) a risk for alcohol dependence or (ii) a symptom/feature of AUD itself. Although AUD is a disease of the central nervous system, a majority of research has focused on the neuronal underpinnings, leaving glial contributions largely undescribed. We used Drosophila melanogaster (fruit fly) to identify genes whose expression in glia regulates alcohol sedation. Mammals and Drosophila have conserved behavioral responses to alcohol …


Reverse Genetic Screening Of Innexin Gap Junction Proteins In Drosophila Neurons, Shannon P. Fox May 2016

Reverse Genetic Screening Of Innexin Gap Junction Proteins In Drosophila Neurons, Shannon P. Fox

Senior Honors Projects, 2010-2019

The reflexive response and perception of pain (nociception) is an evolutionarily conserved process in animals. Pain can be a major health concern and current treatments often prove insufficient, especially in regards to chronic pain. Greater understanding of the molecular processes underlying pain sensation could lead to new and more effective treatments. The aim of this study is to investigate the molecular mechanisms of cold nociception in Drosophila melanogaster. A specific subset of peripheral sensory neurons (Class III dendritic arborization (da) neurons), are implicated in Drosophila larvae’s response to noxious cold.

Previous literature has associated a family of gap junction protein, …


Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung Apr 2016

Axonal Transport And Life Cycle Of Mitochondria In Parkinson's Disease Model, Hyun Sung

Open Access Dissertations

In neurons, normal distribution and selective removal of mitochondria are essential for preserving compartmentalized cellular function. Parkin, an E3 ubiquitin ligase associated with familial Parkinson’s disease, has been implicated in mitochondrial dynamics and removal. However, it is not clear how Parkin plays a role in mitochondrial turnover in vivo, and whether the mature neurons possess a compartmentalized Parkin-dependent mitochondrial life cycle. Using the live Drosophila nervous system, here, I investigate the involvement of Parkin in mitochondrial dynamics; organelle distribution, morphology and removal. Parkin deficient animals displayed less number of axonal mitochondria without disturbing organelle motility behaviors, morphology and metabolic state. …


Damage-Induced Inflammation And Nociceptive Hypersensitivity In Drosophila Larvae, Daniel T. Babcock May 2010

Damage-Induced Inflammation And Nociceptive Hypersensitivity In Drosophila Larvae, Daniel T. Babcock

Dissertations & Theses (Open Access)

Mounting an effective response to tissue damage requires a concerted effort from a number of systems, including both the immune and nervous systems. Immune-responsive blood cells fight infection and clear debris from damaged tissues, and specialized pain receptors become hypersensitive to promote behavior that protects the damaged area while it heals. To uncover the cellular and molecular mechanisms underlying these processes, we have developed a genetically tractable invertebrate model of damage-induced inflammation and pain hypersensitivity using Drosophila larvae.

To study wound-induced inflammation, we generated transgenic larvae with fluorescent epidermal cells and blood cells (hemocytes). Using live imaging, we monitored the …