Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Neuroinflammation

Discipline
Institution
Publication Year
Publication

Articles 1 - 26 of 26

Full-Text Articles in Molecular and Cellular Neuroscience

Complement System In Multiple Sclerosis: Its Role In Disease Course And Potential As A Therapeutic Target, Michael R. Linzey Jun 2023

Complement System In Multiple Sclerosis: Its Role In Disease Course And Potential As A Therapeutic Target, Michael R. Linzey

Dartmouth College Ph.D Dissertations

Multiple sclerosis (MS) is a clinically heterogeneous neurological condition characterized by neuroinflammation and neurodegeneration. Relapsing-remitting MS, defined by inflammatory attacks, is the most common initial form of MS and there are currently 23 FDA-approved treatments for these patients. These therapies work primarily by reducing inflammation in the CNS; they do not work well in progressive disease. Therefore, an unmet medical need exists for effective therapeutic options to treat progressive MS (PMS).

In MS, intrathecal immunoglobulins synthesis (IIgS) correlates with disease progression. My goals for this dissertation were to establish the pathological role of IIgS and identify new potential therapeutic …


Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes Jun 2023

Role Of Chronic Stress-Induced Neuroinflammation In Rodent Locus Coeruleus Physiology And Anxiety-Like Behaviors, Arthur Anthony Alfonso Reyes

Graduate School of Biomedical Sciences Theses and Dissertations

The locus coeruleus (LC), the primary site of brain norepinephrine (NE), is a key anatomical brain region implicated in the stress response. Stress is a neuroendocrine physiologic response to a stressor that promotes organism survival through adaptive change and restoration of homeostasis. The central stress response, which drives behavioral and physiological change, is primarily mediated by activating the hypothalamic-pituitary-adrenal (HPA) axis. While advantageous in the short term, chronic stress exposure can lead to HPA axis and LC dysregulation, which are thought to contribute to the etiology of anxiety disorders. Previous studies demonstrate the effects of acute stress in increasing LC …


Interactions Between Hiv And Opioids On Antiretroviral Accumulation, The Blood Brain Barrier, And The Inflammatory Response In The Brain., Kara Rademeyer Jan 2023

Interactions Between Hiv And Opioids On Antiretroviral Accumulation, The Blood Brain Barrier, And The Inflammatory Response In The Brain., Kara Rademeyer

Theses and Dissertations

The complex mechanisms related to HIV infection, neurodegeneration, and chronic neuroinflammation collectively describe neuroHIV (Hauser et al. 2007; Chang et al. 2014; Smith et al. 2014). Specifically, opioid abuse, poor penetration of antiretroviral (ARV) drugs, chronic inflammation and neuronal injury/degeneration are all implicated in neuroHIV (Fantuzzi et al. 2003; Letendre et al. 2004; Verani et al. 2005; Duncan and Sattentau 2011; Hong and Banks 2015; Simoes and Justino 2015; Olivier et al. 2018; Murphy et al. 2019; Osborne et al. 2020). For the first time, we demonstrate that morphine, fentanyl, and methadone in vivo alter the brain accumulation of ARVs, …


Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace Sep 2022

Novel Therapeutic Strategies For Alzheimer’S Disease: Prostaglandin D2 Signaling And Its Human Polymorphisms As Well As A Polypharmacological Approach, Charles H. Wallace

Dissertations, Theses, and Capstone Projects

Alzheimer’s disease (AD) is an age related neurodegenerative disease with pathology that includes amyloid plaques, neurofibrillary tangles and non-resolving neuroinflammation. Non-resolving neuroinflammation lasts the entire course of the disease and has deleterious effects and is often thought to accelerate AD pathology. Non-Steroidal Anti-inflammatory Drugs (NSAIDs) have commonly been used as therapeutics to treat pain, inflammation and vascular. NSAIDs work by altering the cyclooxygenase (COX) mediated biosynthesis of prostaglandins which are lipid mediators that have many physiological functions, for example nociception, inflammation and vasodilation. Epidemiological studies support the notion that NSAIDs could be used to treat AD. Yet, clinical trials using …


Investigating The Neuroprotective Effects Of Cannabinoids And Insulin-Like Growth Factors On Glia With Induced Inflammation, Caleb Bloodworth May 2022

Investigating The Neuroprotective Effects Of Cannabinoids And Insulin-Like Growth Factors On Glia With Induced Inflammation, Caleb Bloodworth

Honors Theses

Chronic inflammation is a driver of numerous neurodegenerative diseases that reduce quality of life for affected individuals. Non-psychoactive cannabinoids have begun to gain more interest in the world of anti-inflammatory medicine for chronically ill patients. Along with these cannabinoids, insulin-like growth factor-1 has been examined for its association with downregulation of inflammation. Our research aimed to investigate how neuroglia are affected by treatment with cannabinoids or IGF-1 in the face of inflammation from HIV-1 protein, Tat, or lipopolysaccharide (LPS). Preliminary studies in our laboratory showed that neither cannabinoids or IGF-1 treatment altered astrocyte morphology or overall astrocyte viability under baseline …


Innate Lymphoid Cell Characterization And Ilc2s In Neuroinflammation In Aging And Sex Differences, Alexis Mobley, Alexis S. Mobley May 2022

Innate Lymphoid Cell Characterization And Ilc2s In Neuroinflammation In Aging And Sex Differences, Alexis Mobley, Alexis S. Mobley

Dissertations & Theses (Open Access)

Aging affects immunologic responses by a global immune system suppression, including dysregulation of cytokine mediators, leading to increased inflammation throughout all systems, termed inflammaging. However, understanding healthy aging mechanisms can bypass this effect. Inflammaging also leads to poor outcomes during brain injury, making immune-targeting therapeutics tantamount to overall brain health and longevity. Moreover, sex affects disease etiology and severity through hormonal and chromosomal sex, as the X chromosome contains most immunology-based genes. Androgens have a generally suppressive effect on the immune system. Additionally, when immune responses are mounted, males are better at CD4+ T cell type (Th1) responses, while females …


An Investigation Of Hhv6'S Impact On The Cognitive Progression And Microglial Changes In An Alzheimer's Disease Cohort, Charles E. Seaks Jan 2022

An Investigation Of Hhv6'S Impact On The Cognitive Progression And Microglial Changes In An Alzheimer's Disease Cohort, Charles E. Seaks

Theses and Dissertations--Physiology

The role of herpesviruses and, more specifically, HHV6 in the development of Alzheimer’s disease (AD) and associated cognitive decline is still being investigated. High ubiquity and prevalence in the population have led to a high degree of skepticism about HHV6 as a potential contributor to cognitive decline and dementias. However, recent evidence related to another herpesvirus, herpes simplex virus 1, suggests that reactivation, not carriage, of the virus may be the key factor to explain the dissonance between the virus’ ubiquity and contributions to dementias. With that in mind, we set out to assess cases from the Sanders-Brown Center on …


Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams Jan 2022

Apoe Genotype And Cerebral Glucose Metabolism: A Multi-Omics Approach, Holden C. Williams

Theses and Dissertations--Physiology

Apolipoprotein E (APOE) is encoded by the APOE gene, present in humans as three main isoforms (E2, E3, and E4). E4 carriers face up to a 15-fold increased risk for developing late-onset Alzheimer’s disease (AD), while E2 carriers are protected. Understanding the risk conferred by E4 has been an extensive research focus for nearly three decades, but the exact mechanism has yet to be proven. Many studies have demonstrated attenuated roles of E4 in classical hallmarks of AD, notably amyloid processing and neurofibrillary formation, which normally present later in disease progression. How APOE influences hallmarks that present much earlier are …


Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske Jan 2022

Uncovering The Role Of Apoe4 On Alzheimer’S Disease-Related Neuroinflammation, Courtney Marie Kloske

Theses and Dissertations--Physiology

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by two hallmark pathologies: amyloid-beta plaques (Ab plaques) and hyperphosphorylated, aggregated tau tangles. These pathologies are typically accompanied by the presence of neuroinflammation which is primarily mediated by microglia. Interestingly, several genetic risk factors that increase the risk of AD also have direct impacts on neuroinflammation. Of interest, Apolipoprotein E (ApoE) is the largest genetic risk factor for AD. ApoE has three isoforms- E4 confers an increased risk for AD, E3 is considered the “control” phenotype, and E2 is protective against AD. E4 plays a role in virtually …


Microglia Polarize In Response To Transactive Response Dna-Binding Protein-43 (Tdp-43) And Display Partial Recovery After Removal Of The Stimulus, Alicen Wilcox Sep 2021

Microglia Polarize In Response To Transactive Response Dna-Binding Protein-43 (Tdp-43) And Display Partial Recovery After Removal Of The Stimulus, Alicen Wilcox

Honors Theses

The proper response to protein signals is necessary for a healthy central nervous system (CNS), and protein dysregulation is a feature of neurodegenerative diseases. Transactive response DNA-binding protein-43 (TDP-43) is an intranuclear protein, but mislocalization is associated with amyotrophic lateral sclerosis (ALS). TDP-43 is released into the extracellular space where it is sensed by microglia, the CNS-resident immune cells. Our data and the literature suggest that microglia respond to TDP-43 dysregulation by increasing CNS inflammation. The goal of this study was to determine the impact of TDP-43 on microglial function and the extent to which microglia recovery. To study the …


Myelin, Cpla2, And Azithromycin: Modulation Of Macrophage Activation In Spinal Cord Injury Inflammation, Timothy J. Kopper Jan 2021

Myelin, Cpla2, And Azithromycin: Modulation Of Macrophage Activation In Spinal Cord Injury Inflammation, Timothy J. Kopper

Theses and Dissertations--Physiology

Spinal cord injury (SCI) produces a chronic inflammatory state primarily mediated by macrophages consisting of resident microglia and infiltrating monocytes. These chronically activated SCI macrophages adopt a pro-inflammatory, pathological state that continues to cause additional damage after the initial injury and inhibits recovery. While the roles of macrophages in SCI pathophysiology are well documented, the factors contributing to this maladaptive response are poorly understood. Here, we identify the detrimental effects of myelin debris on macrophage physiology and demonstrate a novel, activation state-dependent role for cytosolic phospholipase-A2 (cPLA2) in myelin- mediated potentiation of pro-inflammatory macrophage activation. Macrophage- mediated inflammatory …


Targeting The Cerebrovasculature In Sepsis: A Focus On The Brain Microvascular Endothelium, Divine C. Nwafor Jan 2021

Targeting The Cerebrovasculature In Sepsis: A Focus On The Brain Microvascular Endothelium, Divine C. Nwafor

Graduate Theses, Dissertations, and Problem Reports

The blood-brain barrier (BBB) is a critical interface between the systemic circulation and the brain. It is a specialized multicellular unit composed of brain microvascular endothelial cells (BMECs), pericytes, a basement membrane, and astrocytic end foot processes. BMECs are a principal component of the BBB that provide the structural framework needed for the stringent transport of molecules into the brain. BMEC dysfunction permits the trafficking of neurotoxins from systemic circulation into the brain, which ultimately exacerbates BBB dysfunction and neuroinflammation. Studies have shown that BBB dysfunction is a key determinant of cognitive decline in sepsis. However, there are critical knowledge …


Differential Expression Of Rna In The Rat Peripheral Nervous System Following Nerve Injury And Treatment With Pain-Relieving Celecoxib-Loaded Nanomedicine, Andrea Stevens Aug 2020

Differential Expression Of Rna In The Rat Peripheral Nervous System Following Nerve Injury And Treatment With Pain-Relieving Celecoxib-Loaded Nanomedicine, Andrea Stevens

Electronic Theses and Dissertations

The neuroinflammatory response to peripheral nerve injury is associated with chronic pain and significant changes in the expression profiles of RNAs in neurons, glia and infiltrating immune cells: a neuro-immune triad. Chronic constriction injury (CCI) of the rat sciatic nerve provides an opportunity to mimic neuropathic injury and quantitatively assess behavior and differential gene expression in individual animals. Macrophages that phagocytose intravenously injected nanoemulsion carrying the non-steroidal anti-inflammatory, NSAID, Celecoxib, naturally accumulate at the site of injury resulting in relief of CCI behavioral hyper-sensitivity. It is not known beyond the inhibition of cyclooxygenase-2 (COX-2) activity and the reduction in prostaglandin …


Modulating Matrix Metalloproteases And Inflammation In Huntington’S Disease, Alejandro Lopez Ramirez May 2020

Modulating Matrix Metalloproteases And Inflammation In Huntington’S Disease, Alejandro Lopez Ramirez

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Huntington’s disease (HD) is a rare and incurable autosomal neurodegenerative disease affecting 1-10 in every 100,000 people in the world. There is no cure for HD and treatments available alleviate certain symptoms for short periods of time. Evidence suggests that neuropathology of HD begins with the proteolysis of the mutated Huntingtin (mHTT) protein. A variety of proteases, like the matrix metalloproteases, cleave mHTT creating proteinaceous fragments that are thought to be neurotoxic. As these fragments increase in the brain, the damage to neurons also increases, leading to chronic inflammation due to hyper reactive microglia and astrocytes attempting to minimize and …


Cerebro-Vascular Disruption Mediated Initiation And Propagation Of Traumatic Brain Injury In A Fluid Percussion Injury Model, Xiaotang Ma Dec 2019

Cerebro-Vascular Disruption Mediated Initiation And Propagation Of Traumatic Brain Injury In A Fluid Percussion Injury Model, Xiaotang Ma

Dissertations

Traumatic brain injury (TBI) is a major health problem for over 3.17 million people in the US. There is no FDA-approved drug for the treatment because the injury mechanisms have not been clearly identified. The knowledge gap is addressed here by the lateral fluid percussion injury (FPI) rat model, through the understanding of layer-structured mechanisms from physical vascular rupture to acute necrosis, as well as biochemical changes in perivascular space as secondary events.

Firstly, the cerebrovascular hemorrhage and related infarct volume are investigated as the primary events in moderate FPI, which is found to be increased with injury severity in …


Role Of Astrocyte-Derived Extracellular Vesicles In Neuroinflammation Mediated By Drug Abuse, Ke Liao Dec 2019

Role Of Astrocyte-Derived Extracellular Vesicles In Neuroinflammation Mediated By Drug Abuse, Ke Liao

Theses & Dissertations

Neuronal damage and neuroinflammation is a hallmark feature of HIV-associated neurological disorders (HANDs). Opioids abuse accelerates the incidence and progression of HAND; however, the mechanisms underlying the potentiation of neuropathogenesis by these drugs remain elusive. Extracellular vesicles (EVs) are essential conduits in HIV and drug abuse-mediated synaptodendritic injury and neuroinflammation. Findings from our group have demonstrated that astrocyte-derived EV (ADEV)-miRNA-29b mediates HIV Tat and morphine-induced neuronal injury, thus underscoring the importance of such interactions in NeuroHIV.

Besides, HIV Tat and morphine-mediated synaptodendritic injury via ADEVs, we are also interested in whether ADEVs contributes to neuroinflammation. Microglia are critical players in …


Investigating Neuroinflammation And Demyelination In The Nervous System Of Twitcher Mice By The Use Of Immunohistochemistry, Irene Wilson May 2019

Investigating Neuroinflammation And Demyelination In The Nervous System Of Twitcher Mice By The Use Of Immunohistochemistry, Irene Wilson

Natural Sciences and Mathematics | Biological Sciences Master's Theses

Neuroinflammation and demyelination are the hallmark lesions of the Twitcher mouse—the model of Krabbe Disease. By analyzing hemibrains and sciatic nerves via immunohistochemistry, we supported the microglial hypothesis that early activation of microglial cells, macrophages, and globoid cells in the nervous system of Twitcher mice results in specific cellular polarization states that may contribute to myelin loss. The influx of activated macrophages seen in both the central and peripheral nervous systems at days 21 and 17, respectively, accounted for this polarization. Using selected M1 and M2 markers, YKL-40, and GPNMB and CD206, respectively, we proved that microglial cells and macrophages …


Role Of Extracellular Vesicles In Neuroinflammatory Progression And Mitochondrial Functional Alterations, Ashley E. Russell Jan 2019

Role Of Extracellular Vesicles In Neuroinflammatory Progression And Mitochondrial Functional Alterations, Ashley E. Russell

Graduate Theses, Dissertations, and Problem Reports

Inflammation within the central nervous system (CNS), termed neuroinflammation, is a defining characteristic of many neuropathological conditions, including Alzheimer’s disease (AD) and stroke. Certain inflammatory mediators activate the transcription factor NF-κB, which induces transcription of many pro-inflammatory genes, including miR-34a and miR-146a. Several target candidate genes of these miRNAs encode for proteins of the mitochondrial electron transport chain. In our studies, we demonstrate that in response to inflammatory stimuli, such as TNF-α, the expression of miR-34a and -146a is significantly increased in several CNS cell types, and in their secreted extracellular vesicles (EVs). Exposure to TNF-α-derived EVs significantly increases cellular …


Mechanisms Regulating Axon Initial Segment Stability, Savannah D. Benusa Jan 2018

Mechanisms Regulating Axon Initial Segment Stability, Savannah D. Benusa

Theses and Dissertations

Axon initial segment (AIS) disruption has been described in a number of pathological environments where neuroinflammation is a contributing factor; however, whether this disruption is reversible in unknown. To address the principle of AIS structural recovery, we employed an acute neuroinflammatory model. Acute neuroinflammation induced disruption of AIS structural and functional domains and, importantly, upon resolution of neuroinflammatory conditions, was reversed.

Consistent with other studies, we observed a close interaction of microglia with AISs, and utilized this acute neuroinflammatory model to investigate the relationship between reactive microglia and AIS integrity. Gene expression analysis of microglial transcription profiles identified reactive oxygen …


Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu Aug 2017

Inflammasome Activation By Methamphetamine Potentiates Lipopolysaccharide Stimulation Of Il-1Β Production In Microglia, Enquan Xu

Theses & Dissertations

Methamphetamine (Meth) is a psychostimulant drug that is widely abused all around the world. The administration of Meth causes a strong instant euphoria effect, and long-term of abuse is correlative of drug-dependence and neurotoxicity. The neuroimaging studies demonstrated that the long-term abuse of Meth is associated with the reduction of the dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) in the striatum. Neuroinflammation is well-accepted as an important mechanism underlying the Meth-induced neurotoxicity. The over-activated microglia were found both in Meth human abusers and animal models.

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is the most predominant Nod-like …


Expression And Function Of Inflammation-Associated Micrornas In Traumatic Brain Injury, Emily Harrison May 2016

Expression And Function Of Inflammation-Associated Micrornas In Traumatic Brain Injury, Emily Harrison

Theses & Dissertations

MicroRNAs (miRNAs) are important regulators of gene expression. Many neurological diseases, including traumatic brain injury alter expression of miRNAs in the brain. However, the function of these molecules in the context of TBI is largely unknown. Here we report multiple potential roles for miRNAs in TBI, some of which extend beyond the traditional model of post-transcriptional regulation, highlighting that these RNA molecules may have broader implications for the neurobiology of disease. We found that miR-155 plays an essential role in interferon expression after CCI and that miR-155 contributes to TBI induced anxiety, potentially through regulation of interferons. Expression of miR-155 …


The Role Of Astrocytic Calcineurin Activation And Downstream Signaling In Neurodegenerative Diseases, Melanie M. Pleiss Jan 2016

The Role Of Astrocytic Calcineurin Activation And Downstream Signaling In Neurodegenerative Diseases, Melanie M. Pleiss

Theses and Dissertations--Pharmacology and Nutritional Sciences

Calcineurin (CN) is a calcium (Ca2+)-sensitive serine/threonine protein phosphatase that plays a significant role in several cell signaling pathways, and has been implicated in many neurodegenerative diseases including Alzheimer’s disease (AD) and vascular cognitive impairment and dementia (VCID). Although normally found in neurons, CN also appears at high levels in activated astrocytes under conditions of injury and disease. To elucidate the role of astrocytic calcineurin signaling in neurodegenerative diseases, our lab has used primary rat astrocytes, transgenic and diet-induced mouse models of dementia, and human tissue biospecimens from confirmed AD and VCID cases.

To better understand mechanisms for …


Mechanisms Of Neural Precursor Cell Apoptosis By Microglia-Derived Cytokines, Jennifer Guadagno Jan 2015

Mechanisms Of Neural Precursor Cell Apoptosis By Microglia-Derived Cytokines, Jennifer Guadagno

Electronic Thesis and Dissertation Repository

The persistence of neural precursor cells (NPCs) in distinct niches of the adult brain and spinal cord provides an important opportunity for regeneration in the affected nervous system. In the adult brain, neural precursor cells (NPCs) generate new neurons that can be integrated into the CNS circuitry to replace damaged or lost neurons, and contribute to learning and memory processes. Deregulated neurogenesis has been observed under both acute and chronic neurological conditions including stroke, Alzheimer’s disease, and Parkinson’s disease. The extent to which neurogenesis contributes to brain repair is severely limited by the neuroinflammatory processes associated with these neurodegenerative conditions. …


Flavonoids With Novel Nicotinic Activity As Potential Pharmacotherapies To Treat Ethanol-Induced Neurotoxicity, Joseph A. Lutz Jan 2014

Flavonoids With Novel Nicotinic Activity As Potential Pharmacotherapies To Treat Ethanol-Induced Neurotoxicity, Joseph A. Lutz

Theses and Dissertations--Pharmacy

Ethanol causes neurotoxicity via several mechanisms at different points in the cycle of dependence, including neuroinflammation and oxidative stress during ethanol exposure as well as excitotoxicity during ethanol withdrawal. The primary therapeutic implication is that ethanol-induced neurotoxicity requires multifunctional pharmacotherapies which reduce all mechanisms. Using an innovative pharmacological high throughput screening method on a large plant extract library we discovered flavonoids with alpha7 nicotinic acetylcholine receptor (nAChR) activity. In addition to their well-known anti-inflammatory and antioxidant properties, this novel activity means they can potentially reduce excitotoxicity and therefore makes them ideal for inhibition of ethanol-induced neurotoxicity. Rhamnetin, the candidate compound, …


The Expression And Cellular Localization Of Cc-Chemokine Receptor 5 (Ccr5) After Traumatic Brain Injury, Vuvi H. Nguyen May 2010

The Expression And Cellular Localization Of Cc-Chemokine Receptor 5 (Ccr5) After Traumatic Brain Injury, Vuvi H. Nguyen

Dissertations & Theses (Open Access)

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become …


The Expression And Cellular Localization Of Cc-Chemokine Receptor 5 (Ccr5) After Traumatic Brain Injury, Vuvi H. Nguyen May 2010

The Expression And Cellular Localization Of Cc-Chemokine Receptor 5 (Ccr5) After Traumatic Brain Injury, Vuvi H. Nguyen

Dissertations & Theses (Open Access)

Traumatic brain injury results from a primary insult and secondary events that together result in tissue injury. This primary injury occurs at the moment of impact and damage can include scalp laceration, skull fraction, cerebral contusions and lacerations as well as intracranial hemorrhage. Following the initial insult, a delayed response occurs and is characterized by hypoxia, ischemia, cerebral edema, and infection. During secondary brain injury, a series of neuroinflammatory events are triggered that can produce additional damage but may also help to protect nervous tissue from invading pathogens and help to repair the damaged tissue. Brain microglia and astrocytes become …