Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Utilizing Crispr Cas9 To Visualize Dopamine Receptors In Caenorhabditis Elegans, Lauren Michelle Velasquez Aug 2023

Utilizing Crispr Cas9 To Visualize Dopamine Receptors In Caenorhabditis Elegans, Lauren Michelle Velasquez

Electronic Theses, Projects, and Dissertations

Dopamine (DA) is a neurotransmitter with imperative implications in many functions including movement, reward, and cognition. Studying the pathways of dopaminergic neurons at multiple levels allows us to understand the ways in which these systems can go wrong. We study dopamine in a model system such as the worm Caenorhabditis elegans because of its relatively simple and well-characterized nervous system. DA is involved in regulating chemosensory behaviors in worms. The purpose of this research project is to definitively answer the following question: Are the dopamine receptors DOP-1 and DOP-4 expressed in chemosensory neurons? Previous reporter assays show that neither of …


Elucidating The Modulatory Role Of Dopamine In The C. Elegans Chemosensory Ash Neuron, Cory Kunkel Aug 2021

Elucidating The Modulatory Role Of Dopamine In The C. Elegans Chemosensory Ash Neuron, Cory Kunkel

Electronic Theses, Projects, and Dissertations

The neurotransmitter dopamine regulates chemosensory avoidance behavior in the model organism Caenorhabditis elegans. Avoidance behaviors are mediated by the polymodal ASH nociceptive sensory neurons, and behavioral avoidance of stimuli detected by ASH is less robust when dopamine signaling is impaired. We are investigating the neural response of the ASH neurons to various stimuli; our investigation includes the behavioral and physiological responses from the ASH neurons as dopamine signaling is manipulated to better understand the effects of dopamine on these sensory neurons. We hypothesize that dopamine plays a regulatory role on the ASH neurons, lessening the response of the ASH …