Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular and Cellular Neuroscience

Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey May 2021

Translational Fidelity And Its Role In Neuronal Homeostasis, Markus Terrey

Electronic Theses and Dissertations

The process of translation, which refers to decoding genetic information from mRNA to protein, is vital for all cellular function. Translational fidelity starts at the level of aminoacylation of transfer RNAs (tRNA). This reaction is catalyzed by aminoacyl tRNA synthetases where each amino acid is transferred to its corresponding cognate tRNA. Because tRNAs harbor the anticodon sequence to decodes a particular mRNA codon, the specific aminoacylation of the tRNA with a cognate amino acid establishes the rules of decoding genetic code into proteins. Aminoacylated tRNAs are then delivered to ribosomes, where ribosomes in a highly organized manner need to accurately …


Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman Dec 2018

Investigating Autophagy Dysfunction Induced By A Parkinson's Disease-Causing Mutation In Vps35, Abir Ashfakur Rahman

Boise State University Theses and Dissertations

Parkinson’s Disease (PD) is an idiopathic disorder with no known cure. With number of cases steadily rising around the world, it is imperative to turn to the underlying cellular and molecular mechanisms of the disease manifestation and neurodegeneration to craft novel modes of therapy. VPS35 is one of the few genes that have identified and definitively linked to familial PD. The particular mutation that has been associated is known to cause dysfunction of a key cellular process known as autophagy. This process is primarily responsible for clearance of unwanted, damaged or misfolded proteins, among other things. Our study reveals an …


Investigation Of Sox9 Ablation On Neural Stem Cell Behaviour After Spinal Cord Injury, Stephen Mcdonald Oct 2013

Investigation Of Sox9 Ablation On Neural Stem Cell Behaviour After Spinal Cord Injury, Stephen Mcdonald

Electronic Thesis and Dissertation Repository

After spinal cord injury neural stem cells are activated to proliferate and differentiate primarily into astrocytes, but are unable to replace lost neurons or aid in neurological recovery. Recent research shows that the transcription factor Sox9 promotes gliogenesis while inhibiting neurogenesis, and that Sox9 ablation causes improved recovery after spinal cord injury. The purpose of this study was to determine how Sox9 ablation alters neural stem cell behaviour after spinal cord injury and whether it leads to neurological improvements. We used BrdU and YFP to label and track neural stem cells and a neural stem cell-specific Sox9 knockout mouse model …


Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox Jan 2013

Aβ Alters The Dna Methylation Status Of Cell-Fate Genes In An Alzheimer’S Disease Model, Gary D. Isaacs, Noor Taher, Courtney Mckenzie, Rebecca Garrett, Matthew Baker, Nena Fox

Faculty Publications and Presentations

Alzheimer’s disease (AD) is characterized by neurofibrillary tangles and extracellular amyloid-β plaques (Aβ). Despite ongoing research, some ambiguity remains surrounding the role of Aβ in the pathogenesis of this neurodegenerative disease. While several studies have focused on the mutations associated with AD, our understanding of the epigenetic contributions to the disease remains less clear. To that end, we determined the changes in DNA methylation in differentiated human neurons with and without Aβ treatment. We isolated the DNA from neurons treated with Aβ or vehicle, and digested the two samples with either a methylation-sensitive (HpaII) or a methylation-insensitive (MspI) restriction endonuclease. …