Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Examining Development And Function Of Pretectal Visual Neural Circuits In Gs Homeobox 1 Mutant Zebrafish, Alexandra Rose Schmidt Jan 2022

Examining Development And Function Of Pretectal Visual Neural Circuits In Gs Homeobox 1 Mutant Zebrafish, Alexandra Rose Schmidt

Graduate Theses, Dissertations, and Problem Reports

Brain development requires a coordinated genetic code to regulate initial cell identity determination, migration, and connectivity, to establish function of neural circuits. Independent neural circuits underlie our ability to produce both complex and innate behavioral responses to sensory stimuli that are often conserved across vertebrate organisms. Sensory processing disruptions are associated with several neurodevelopmental disorders (NDDs). Therefore, gene mutations altering neurodevelopment can lead to changes influencing structure and function of individual neural circuits, causing behavioral deviations in sensory responsiveness. Crucial gene networks that define functional properties of sensory domains are often explored using non-mammalian vertebrate models, such as the zebrafish. …


Characterizing And Treating The Neuropathology Of Tuberous Sclerosis Complex In The Mouse, Sharon W. Way Dec 2010

Characterizing And Treating The Neuropathology Of Tuberous Sclerosis Complex In The Mouse, Sharon W. Way

Dissertations & Theses (Open Access)

Tuberous sclerosis complex (TSC) is a multisystem, autosomal dominant disorder affecting approximately 1 in 6000 births. Developmental brain abnormalities cause substantial morbidity and mortality and often lead to neurological disease including epilepsy, cognitive disabilities, and autism. TSC is caused by inactivating mutations in either TSC1 or TSC2, whose protein products are known inhibitors of mTORC1, an important kinase regulating translation and cell growth. Nonetheless, neither the pathophysiology of the neurological manifestations of TSC nor the extent of mTORC1 involvement in the development of these lesions is known. Murine models would greatly advance the study of this debilitating disorder. This thesis …