Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden Jan 2021

Cloning And Functional Characterizations Of Circular Rnas From The Human Mapt Locus, Justin R. Welden

Theses and Dissertations--Molecular and Cellular Biochemistry

Under pathophysiological conditions, the microtubule protein tau (MAPT) forms neurofibrillary tangles that are the hallmark of sporadic Alzheimer’s disease as well as familial frontotemporal dementias linked to chromosome 17 (FTDP-17). In this work, I report that MAPT forms circular RNAs through backsplicing of exon 12 to either exon 10 or exon 7 (12→10; 12→7), and that these circular RNAs are translated into proteins.

Using stable cell lines overexpressing the circular tau RNAs 12→7 and 12→10, we have discovered that the tau circular RNA 12→7 is translated in a rolling circle, giving rise to multiple proteins. This circular RNA …


Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer Jan 2020

Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer

Theses and Dissertations--Physiology

Altered metabolic pathways appear to play central roles in the pathophysiology of late-onset Alzheimer’s disease (AD). Carrier status of the E4 allele of the APOE gene is the strongest genetic risk factor for late-onset AD, and increasing evidence suggests that E4 carriers may be at an increased risk for neurodegeneration based on inherent metabolic impairments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. In chapter 1, the literature on nutritional interventions in E4 carriers aimed at mitigating disease risk is reviewed. Studies investigating the mechanism by which …


Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn Jan 2019

Mutations Of Fus Cause Aggregation Of Rna Binding Proteins, Disruptions In Protein Synthesis, And Dysregulation Of Nonsense Mediated Decay, Marisa Elizabeth Kamelgarn

Theses and Dissertations--Toxicology and Cancer Biology

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron death and subsequent muscle atrophy. Approximately 15% of ALS cases are inheritable, and mutations in the Fused in Sarcoma (FUS) gene contribute to approximately 5% of these cases, as well as about 2% of sporadic cases. FUS performs a diverse set of cellular functions, including being a major regulator of RNA metabolism. FUS undergoes liquid- liquid phase transition in vitro, allowing for its participation in stress granules and RNA transport granules. Phase transition also contributes to the formation of cytoplasmic inclusions found in the …