Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Molecular and Cellular Neuroscience

Non-Invasive Method For Leptin Supplementation In Zebrafish (Danio Rerio), Regan Mcnamara Jan 2020

Non-Invasive Method For Leptin Supplementation In Zebrafish (Danio Rerio), Regan Mcnamara

Williams Honors College, Honors Research Projects

I tested the hypothesis that recombinant leptin protein can be introduced to zebrafish in vivo through non-invasive soaking in a solution containing the protein. One way to study various molecules’ effects in vivo is through intraperitoneal or intracerebroventricular injections during the embryonic or larval stage, which is invasive, difficult to administer, and can have a high mortality rate. 48 hours post fertilization (hpf) zebrafish were soaked in a His-tagged recombinant leptin protein solution at 10 nM and 100 nM concentrations (produced by Genscript). After soaking, zebrafish larvae were washed extensively to remove all recombinant protein on their exterior before homogenization. …


Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer Jan 2020

Apoe As A Metabolic Regulator In Humans, Mice, And Astrocytes, Brandon C. Farmer

Theses and Dissertations--Physiology

Altered metabolic pathways appear to play central roles in the pathophysiology of late-onset Alzheimer’s disease (AD). Carrier status of the E4 allele of the APOE gene is the strongest genetic risk factor for late-onset AD, and increasing evidence suggests that E4 carriers may be at an increased risk for neurodegeneration based on inherent metabolic impairments. A new appreciation is forming for the role of APOE in cerebral metabolism, and how nutritional factors may impact this role. In chapter 1, the literature on nutritional interventions in E4 carriers aimed at mitigating disease risk is reviewed. Studies investigating the mechanism by which …


The Effects Of A High-Fat Diet On The Brain; A Meta-Analysis Of Microglia In The Hypothalamus, Emily Karabeika Jan 2020

The Effects Of A High-Fat Diet On The Brain; A Meta-Analysis Of Microglia In The Hypothalamus, Emily Karabeika

Regis University Student Publications (comprehensive collection)

The typical ‘Western Diet’ includes a diet high in fats and sugars. This thesis explores the problems that this type of diet could have on the brain. A meta-analysis was conducted to show activated microglia count in the hypothalamus of mice after a high-fat diet. The results showed a large effect size with the included studies, showing that a high fat diet significantly increases microglia count across studies. Increased activated microglia leads to chronic inflammation in the hypothalamus, which is linked to metabolic problems like insulin resistance, leptin resistance and glucose intolerance.