Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular and Cellular Neuroscience

Targeting The Cerebrovasculature In Sepsis: A Focus On The Brain Microvascular Endothelium, Divine C. Nwafor Jan 2021

Targeting The Cerebrovasculature In Sepsis: A Focus On The Brain Microvascular Endothelium, Divine C. Nwafor

Graduate Theses, Dissertations, and Problem Reports

The blood-brain barrier (BBB) is a critical interface between the systemic circulation and the brain. It is a specialized multicellular unit composed of brain microvascular endothelial cells (BMECs), pericytes, a basement membrane, and astrocytic end foot processes. BMECs are a principal component of the BBB that provide the structural framework needed for the stringent transport of molecules into the brain. BMEC dysfunction permits the trafficking of neurotoxins from systemic circulation into the brain, which ultimately exacerbates BBB dysfunction and neuroinflammation. Studies have shown that BBB dysfunction is a key determinant of cognitive decline in sepsis. However, there are critical knowledge …


Induction Of Cerebral Hyperexcitability By Peripheral Viral Challenge: Role Of Cxcl10 Chemokine, Tiffany J. Petrisko Jan 2019

Induction Of Cerebral Hyperexcitability By Peripheral Viral Challenge: Role Of Cxcl10 Chemokine, Tiffany J. Petrisko

Graduate Theses, Dissertations, and Problem Reports

Peripheral viral infections are po­tent comorbid factors that exacerbate neuro­degene­ration. Although the under­lying mecha­nisms have not been defined, neuronal hyperexcitability has been established as an underlying feature. Our lab has developed a preclinical model in which a viral mimetic, poly­inosinic-poly­cytidylic acid (PIC) is injected in­tra­peritoneally to induce an anti-viral acute phase response (APR). APR in turn elicits robust neuronal hyperexcitability. The present study was undertaken to characterize molecular mechanisms that mediate the development of hyperexcitability in response to PIC challenge. The analysis of brain tissue after PIC challenge revealed a robust elevation of CXCL10 chemokine, indicating its putative role in …