Open Access. Powered by Scholars. Published by Universities.®

Molecular and Cellular Neuroscience Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular and Cellular Neuroscience

Early Onset Alzheimer’S Disease Markers In Mouse Hippocampus Unveiled By Single-Cell Transcriptomic Analysis Following Cranial Radiotherapy, Tuba Aksoy Aug 2024

Early Onset Alzheimer’S Disease Markers In Mouse Hippocampus Unveiled By Single-Cell Transcriptomic Analysis Following Cranial Radiotherapy, Tuba Aksoy

Dissertations & Theses (Open Access)

Cranial radiation therapy plays an integral role in the treatment of brain tumors but can lead to progressive cognitive deficits in survivors by mechanisms that are poorly understood. To develop preventive or mitigative strategies, it is crucial to better understand the underlying pathogenesis of radiation-induced cognitive impairments. The study investigated single-cell transcriptomics and DNA methylation changes as potential drivers of persistent cellular dysfunction after radiation exposure, specifically concentrating on the CA1-3 regions of the hippocampus and the prefrontal cortex due to their role in cognitive functions. Thirteen-week-old mice underwent whole-brain radiation at clinically relevant doses. Following whole-brain radiation, an assessment …


Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi Jan 2024

Structural And Functional Consequences Of Pde6 Prenylation In Rod And Cone Photoreceptors, Faezeh Moakedi

Graduate Theses, Dissertations, and Problem Reports

Phosphodiesterase-6 (PDE6) serves as a pivotal component in the phototransduction pathways of both cone and rod photoreceptors. In cones, PDE6 consists of tetrameric subunits: inhibitory (γ') and catalytic (α'). The catalytic subunit, PDE6α', contains a C-terminal prenylation motif. Deletion of this motif is associated with achromatopsia (ACHM), a form of color blindness. The mechanisms underlying the disease and the roles of PDE6 lipidation in vision remain elusive. Meanwhile, rod PDE6 is composed of α and β catalytic subunits and γ inhibitory subunits, with alterations in the C-terminal "prenylation motif" of PDE6β linked to retinitis pigmentosa (RP) pathology. In this comprehensive …


Heat Shock Protein 90 (Hsp90) System In Health And Disease., Daniella Munezero Jan 2023

Heat Shock Protein 90 (Hsp90) System In Health And Disease., Daniella Munezero

Graduate Theses, Dissertations, and Problem Reports

Cells rely on heat shock proteins (HSP) to facilitate and regulate the folding of the substrate proteins into their native state, and degradation if misfolding cannot be prevented. HSP90, a member of the HSP family, is a potential target for treatment of cancer and neurodegenerative diseases. Unfortunately, several clinical trials for cancer treatment have been discontinued due to cell toxicity accompanying HSP90 inhibition. HSP90 has four distinct but structurally similar paralogs. HSP90 inhibitors target all the paralogs despite increasing proof of functional differences among the paralogs. Understanding the in vivo function of HSP90 and the role played by each paralog …


The Classification Of Basket Neural Cells In The Mammalian Neocortex, Sreya Pudi Oct 2021

The Classification Of Basket Neural Cells In The Mammalian Neocortex, Sreya Pudi

Senior Theses

Basket neuronal cells of the mammalian neocortex have been classically categorized into two or more groups. Originally, it was thought that the large and small types are the naturally occurring groups that emerge from reasons that relate to neurobiological function and anatomical position. Later, a study based on anatomical and physiological features of these neurons introduced a third type, the net basket cell which is intermediate in size as compared to the large and small types. In this study, multivariate analysis was used to test the hypothesis that the large and small types are morphologically distinct groups. The results of …


Expression Analyses Of Hippocampal And Cortical Proteins In A Rat Model For Alzheimer’S Disease, Rangon Islam May 2020

Expression Analyses Of Hippocampal And Cortical Proteins In A Rat Model For Alzheimer’S Disease, Rangon Islam

Theses and Dissertations

Currently, Alzheimer’s disease (AD) has no cure. Using a rat AD model, we identified aberrantly expressed proteins during pre-pathology as potential biomarkers. The expression of certain biomarkers was reversed by diazoxide, a repurposed hypertension drug. These results suggest that drug repurposing at an early stage of AD has therapeutic potential.


Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D. Jan 2020

Optimization And Validation Of The Neurolux Wireless Optoelectronics System For Optogenetics, Karis Courey, Su Hyun Lee Ph.D., Adam Smith Ph.D., Nicholas Cilz Ph.D., Sarah K. Williams Avram Ph.D., Adi Cymerblit-Sabba Ph.D., June Song, Nicholas Leipzig Ph.D., W. Scott Young M.D., Ph.D.

Williams Honors College, Honors Research Projects

Utilizing light and genetic engineering, optogenetics permits the manipulation of events within cells via light using the light-sensitive properties of single-component microbial opsins. Microbial opsins are activated by a light source, such as lasers, light-emitting diodes, and incandescent sources that deliver light to the region of interest either directly or indirectly, such as through fiberoptics. In classical in vivo optogenetics, the wiring of optic fibers necessitates tethering of animals by the optic fiber to the light source. The novel NeuroLux wireless optoelectronic system for optogenetics circumvents issues pertaining to classical optogenetics by utilizing near-field power transfer via magnetic coil antennae …


Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani Jan 2020

Combination Of Investigational Cell-Based Therapy And Deep Brain Stimulation To Alter The Progression Of Parkinson’S Disease, Nader El Seblani

Theses and Dissertations--Pharmacy

Parkinson’s disease (PD) is the second most common neurodegenerative disorder and the motor symptoms are caused by progressive loss of midbrain dopamine neurons. There is no current treatment that can slow or reverse PD. Our current “DBS-Plus” clinical trial (NCT02369003) features the implantation in vivo of autologous Schwann cells (SCs) derived from a patient’s sural nerve into the substantia nigra pars compacta (SNpc) in combination with Deep Brain Stimulation (DBS) therapy for treating patients with advanced PD.

The central hypothesis of our research is that transdifferentiated SCs within conditioned nerve tissue will deliver pro-regenerative factors to enhance the survival of …


Mechanisms Of Microglia Mediated Apolipoprotien E Neurotoxicity, Pardeep Singh Jan 2019

Mechanisms Of Microglia Mediated Apolipoprotien E Neurotoxicity, Pardeep Singh

Dissertations and Theses

No abstract provided.


Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas May 2018

Exploiting Click-Chemistry And Microfluidics To Map The Neuronal Itinerary Of App Processing And Amyloid-Beta Generation, Namratha Srinivas

McKelvey School of Engineering Theses & Dissertations

Alzheimer’s disease (AD) is a chronic neurodegenerative disease and is the sixth leading cause of death in the United States with approximately 5.5 million Americans diagnosed with it. The neuropathological hallmark includes extracellular senile plaques and intraneuronal neurofibrillary tangles. Recent GWAS studies have identified genes associated with AD, and have revealed several classes of genes implicated in disease pathogenesis. In particular, three general pathways associated with an increased risk of AD included: 1) cholesterol metabolism, innate immune system, and the membrane trafficking. Our lab has focused on intracellular trafficking as it relates to the processing of amyloid precursor protein (APP), …


A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz Dec 2017

A Neuroprotective Role For Mir-1017, A Non-Canonical Mirna, Matthew De Cruz

Master's Theses

miRNAs are post-transcriptional regulators of gene expression, with numerous being involved in neurobiology. Within the human genome a quarter of the identified miRNA loci derive from a class of miRNAs termed tailed mirtrons. Despite the identification of this large population of miRNA, no functional studies have been conducted to identify their role. In this study we examined the highly expressed and deeply conserved Drosophila 3’ tail mirtron, miR-1017, as a candidate to elucidate tailed mirtron functionality. We identified acetylcholine receptor transcripts, Da5 and Da2, as bona fide targets for miR-1017. Interestingly, Da2 is also the host transcript for miR-1017. We …