Open Access. Powered by Scholars. Published by Universities.®

Behavioral Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Behavioral Neurobiology

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra May 2024

Interactions Between Repetitive Mild Traumatic Brain Injury And Methylphenidate Administration On Catecholamine Transporter Protein Levels Within The Rodent Prefrontal Cortex, Anna Abrimian, Eleni Papadopoulos, Christopher P. Knapp, J. Loweth, Barry Waterhouse, Rachel Navarra

Rowan-Virtua Research Day

It is theorized that low concentrations of dopamine (DA) and norepinephrine (NE) within in the prefrontal cortex (PFC) following traumatic brain injury (TBI) leads to increased risky behavior. Our lab has shown that repeated mild TBI (rmTBI) sex-differentially increases risky behavior in a rodent model. Methylphenidate (MPH) is a psychostimulant drug used to treat symptoms of Attention-Deficit Hyperactivity Disorder (ADHD), also driven by a hypo-catecholaminergic PFC. MPH elevates catecholamine levels by blocking DA and NE transporters, DAT and NET. While the potential of psychostimulants to treat post-TBI symptoms have been explored, the effects of sub-chronic MPH on transporter levels following …


The Impact Of Traumatic Brain Injury On Noradrenergic Innervation Of The Prefrontal Cortex, Jil P. Modi, Christopher P. Knapp, Rachel L. Navarra May 2024

The Impact Of Traumatic Brain Injury On Noradrenergic Innervation Of The Prefrontal Cortex, Jil P. Modi, Christopher P. Knapp, Rachel L. Navarra

Rowan-Virtua Research Day

Traumatic Brain Injury (TBI) is a common cause of death and disability in the United States, and it can occur due to varied reasons including motor vehicle accidents, gunshot wounds, and falls. Following TBIs, patients are often left with lifelong disabilities and cognitive problems that can lead to increased risk-taking behaviors. The main goal of my research was to understand the neural mechanisms that drive increased risk-taking behaviors due to TBIs. The specific areas of the brain I was interested in looking at were the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and/or anterior cingulate cortex (ACC) of the prefrontal …