Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Computational Neuroscience

Machine Learning

Purdue University

Articles 1 - 2 of 2

Full-Text Articles in Neuroscience and Neurobiology

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …


Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone May 2015

Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone

MODVIS Workshop

In this work we deal with the problem of designing and developing computational vision models – comparable to the early stages of the human development – using coarse low-level information.

More specifically, we consider a binary classification setting to characterize biological movements with respect to non-biological dynamic events. To this purpose, our model builds on top of the optical flow estimation, and abstract the representation to simulate the limited amount of visual information available at birth. We take inspiration from known biological motion regularities explained by the Two-Thirds Power Law, and design a motion representation that includes different low-level features, …