Open Access. Powered by Scholars. Published by Universities.®

Neuroscience and Neurobiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Neuroscience and Neurobiology

Utilizing Ai Integrated Neuroimaging Technology To Expand Upon Machine Learning In Positron Emission Tomography Technology With The Aim Of Detecting Amyloid Beta Biomarkers Early In The Onset Of Alzheimer's., Ethan S. Terman Jan 2024

Utilizing Ai Integrated Neuroimaging Technology To Expand Upon Machine Learning In Positron Emission Tomography Technology With The Aim Of Detecting Amyloid Beta Biomarkers Early In The Onset Of Alzheimer's., Ethan S. Terman

Undergraduate Research Posters

Early intervention in Alzheimer's is vital for treatment. The earlier a professional can detect symptoms and make a diagnosis the earlier a prognosis can be implemented. With the prevalence of data in our day-to-day world combined with Artificial intelligence (AI), utilizing both for machine learning can pave the way for more accurate and efficient detection of Alzheimer's and other neurodegenerative diseases. AI combined with Machine learning (ML) increases diagnostic efficiency and reduces human errors, making it a valuable resource for physicians and clinicians alike. With the increasing amount of data processing and image interpretation required, the ability to use AI …


Machine Learning Techniques For Improved Functional Brain Parcellation, Da Zhi Aug 2023

Machine Learning Techniques For Improved Functional Brain Parcellation, Da Zhi

Electronic Thesis and Dissertation Repository

Brain parcellation studies are fundamental for neuroscience as they serve as a bridge between anatomy and function, helping researchers interpret how functions are distributed across different brain regions. However, two substantial challenges exist in current imaging-based brain parcellation studies: large variations in the functional organization across individuals and the intrinsic spatial dependence which causes nearby brain locations to have a similar function. This thesis presents a series of projects aimed to tackle these challenges from different perspectives by using advanced machine learning techniques.

To handle the challenge of individual variability in building precise individual parcellations, Chapter 3 introduces a novel …


Neural Correlates Of Post-Traumatic Brain Injury (Tbi) Attention Deficits In Children, Meng Cao May 2023

Neural Correlates Of Post-Traumatic Brain Injury (Tbi) Attention Deficits In Children, Meng Cao

Dissertations

Traumatic brain injury (TBI) in children is a major public health concern worldwide. Attention deficits are among the most common neurocognitive and behavioral consequences in children post-TBI which have significant negative impacts on their educational and social outcomes and compromise the quality of their lives. However, there is a paucity of evidence to guide the optimal treatment strategies of attention deficit related symptoms in children post-TBI due to the lack of understanding regarding its neurobiological substrate. Thus, it is critical to understand the neural mechanisms associated with TBI-induced attention deficits in children so that more refined and tailored strategies can …


Using Machine Learning To Conduct A Detailed Behavioral Analysis In An Appetitive Social Learning Task, Thomas Shao May 2020

Using Machine Learning To Conduct A Detailed Behavioral Analysis In An Appetitive Social Learning Task, Thomas Shao

Honors Scholar Theses

Learning by watching others, or observational learning, is important for social development and survival. However, not much is known about the brain mechanisms underlying this type of learning. Since the 1960s, observational learning has been widely studied in humans, but developing and analyzing experiments for animals has been challenging. Here, I explore observational learning using a novel paradigm while performing an analysis that involves tracking the rats using an active learning paradigm called DeepLabCut. In this novel paradigm, customized operant conditioning chambers are used for the rats to observe and learn from another animal repeatedly on multiple trials each day. …


Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico Aug 2017

Predictive Power And Validity Of Connectome Predictive Modeling: A Replication And Extension, Michael Wang, Joaquin Goni, Enrico Amico

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neuroimaging, particularly functional magnetic resonance imaging (fMRI), is a rapidly growing research area and has applications ranging from disease classification to understanding neural development. With new advancements in imaging technology, researchers must employ new techniques to accommodate the influx of high resolution data sets. Here, we replicate a new technique: connectome-based predictive modeling (CPM), which constructs a linear predictive model of brain connectivity and behavior. CPM’s advantages over classic machine learning techniques include its relative ease of implementation and transparency compared to “black box” opaqueness and complexity. Is this method efficient, powerful, and reliable in the prediction of behavioral measures …


Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone May 2015

Modeling Visual Features To Recognize Biological Motion: A Developmental Approach, Giulio Sandini, Nicoletta Noceti, Alessia Vignolo, Alessandra Sciutti, Francesco Rea, Alessandro Verri, Francesca Odone

MODVIS Workshop

In this work we deal with the problem of designing and developing computational vision models – comparable to the early stages of the human development – using coarse low-level information.

More specifically, we consider a binary classification setting to characterize biological movements with respect to non-biological dynamic events. To this purpose, our model builds on top of the optical flow estimation, and abstract the representation to simulate the limited amount of visual information available at birth. We take inspiration from known biological motion regularities explained by the Two-Thirds Power Law, and design a motion representation that includes different low-level features, …