Open Access. Powered by Scholars. Published by Universities.®

Virology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Virology

Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman May 2019

Development Of A Long-Acting Nanoformulation Of Dolutegravir For Prevention And Treatment Of Hiv-1 Infection, Brady Sillman

Theses & Dissertations

Dolutegravir (DTG) is a potent human immunodeficiency virus type 1 (HIV-1) integrase strand-transfer inhibitor (INSTI) with a high barrier to viral drug resistance. However, opportunities to improve its profile abound. These include extending the drug’s apparent half-life, increasing penetrance to “putative” viral reservoirs, and reducing inherent toxicities. These highlight, in part, the need for long-acting, slow effective release antiretroviral therapy (LASER ART) delivery schemes. A long-acting (LA) DTG was made by synthesizing a hydrophobic and lipophilic prodrug encased with poloxamer (P407) surfactant. This modified DTG (MDTG) reduced systemic metabolism and polarity, increased lipophilicity and membrane permeability, improved encapsulation, and formed …


Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer Jul 2013

Structural And Thermodynamic Basis Of Amprenavir/Darunavir And Atazanavir Resistance In Hiv-1 Protease With Mutations At Residue 50, Seema Mittal, Rajintha Bandaranayake, Nancy King, Moses Prabu-Jeyabalan, Madhavi Nalam, Ellen Nalivaika, Nese Yilmaz, Celia Schiffer

Celia A. Schiffer

Drug resistance occurs through a series of subtle changes that maintain substrate recognition but no longer permit inhibitor binding. In HIV-1 protease, mutations at I50 are associated with such subtle changes that confer differential resistance to specific inhibitors. Residue I50 is located at the protease flap tips, closing the active site upon ligand binding. Under selective drug pressure, I50V/L substitutions emerge in patients, compromising drug susceptibility and leading to treatment failure. The I50V substitution is often associated with amprenavir (APV) and darunavir (DRV) resistance, while the I50L substitution is observed in patients failing atazanavir (ATV) therapy. To explain how APV, …