Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor May 2018

Functional Similarity Of Prd-Containing Virulence Regulators In Bacillus Anthracis, Malik Raynor

Dissertations & Theses (Open Access)

Bacillus anthracis produces three regulators, AtxA, AcpA, and AcpB, that control virulence gene expression and are members of an emerging class of regulators termed “PCVRs” (Phosphoenolpyruvate-dependent phosphotransferase regulation Domain-Containing Virulence Regulators). AtxA controls expression of the toxin genes; lef, cya, and pag, and is the master virulence regulator and archetype PCVR. AcpA and AcpB are less well studied. AcpA and AcpB independently positively control transcription of the capsule biosynthetic operon capBCADE, and culture conditions that enhance AtxA activity result in capBCADE transcription in strains lacking acpA and acpB. RNA-Seq was used to assess the regulons of the …


Comparative Genomic Analysis Of Two Serotype 1/2b Listeria Monocytogenes Isolates From Analogous Environmental Niches Demonstrates The Influence Of Hypervariable Hotspots In Defining Pathogenesis, Aidan Casey, Kieran Jordan, Aidan Coffey, Edward M. Fox, Olivia Mcauliffe Dec 2016

Comparative Genomic Analysis Of Two Serotype 1/2b Listeria Monocytogenes Isolates From Analogous Environmental Niches Demonstrates The Influence Of Hypervariable Hotspots In Defining Pathogenesis, Aidan Casey, Kieran Jordan, Aidan Coffey, Edward M. Fox, Olivia Mcauliffe

Department of Biological Sciences Publications

The vast majority of clinical human listeriosis cases are caused by serotype 1/2a, 1/2b, 1/2c, and 4b isolates of Listeria monocytogenes. The ability of L. monocytogenes to establish a systemic listeriosis infection within a host organism relies on a combination of genes that are involved in cell recognition, internalization, evasion of host defenses, and in vitro survival and growth. Recently, whole genome sequencing and comparative genomic analysis have proven to be powerful tools for the identification of these virulence-associated genes in L. monocytogenes. In this study, two serotype 1/2b strains of L. monocytogenes with analogous isolation sources, but …


Staphylococcus Aureus Response To Long Chain Antimicrobial Fatty Acids, Benjamin Arsic Sep 2012

Staphylococcus Aureus Response To Long Chain Antimicrobial Fatty Acids, Benjamin Arsic

Electronic Thesis and Dissertation Repository

Staphylococcus aureus is a common pathogen that has the ability to infect virtually every tissue and organ system of the body. Despite its propensity to cause invasive infection, S. aureus is also a commensal organism, asymptomatically colonizing ~25% of the population. Much research has gone into resolving this paradox, focusing on both human and bacterial factors that may contribute to colonization. Antimicrobial fatty acids present on the skin and in the nasal mucosa are important components of the innate immune system, and thus we undertook to further understand how S. aureus responds to these fatty acids, and how this response …


Biology And Pathogenesis Of Acanthamoeba., Ruqaiyyah Siddiqui, Naveed Ahmed Khan Jan 2012

Biology And Pathogenesis Of Acanthamoeba., Ruqaiyyah Siddiqui, Naveed Ahmed Khan

Department of Biological & Biomedical Sciences

Acanthamoeba is a free-living protist pathogen, capable of causing a blinding keratitis and fatal granulomatous encephalitis. The factors that contribute to Acanthamoeba infections include parasite biology, genetic diversity, environmental spread and host susceptibility, and are highlighted together with potential therapeutic and preventative measures. The use of Acanthamoeba in the study of cellular differentiation mechanisms, motility and phagocytosis, bacterial pathogenesis and evolutionary processes makes it an attractive model organism. There is a significant emphasis on Acanthamoeba as a Trojan horse of other microbes including viral, bacterial, protists and yeast pathogens.