Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

Stress Response Mechanisms Of Listeria Monocytogenes, Oindrila Paul Dec 2018

Stress Response Mechanisms Of Listeria Monocytogenes, Oindrila Paul

Dissertations

Listeria monocytogenes is a Gram-positive, facultative intracellular food-borne pathogen that causes the disease listeriosis. In order to establish an infection, L. monocytogenes must survive multiple stressors encountered within the gastrointestinal tract, including alterations in pH, bile, salt, and oxygen availability. This dissertation focused on understanding the stress response of L. monocytogenes to bile. Bile acts as a bactericidal agent by disrupting the membrane integrity and causing instability to macromolecules like DNA. Thus, a bacterium must be able to maintain its membrane architecture, composition and integrity.

Often times, bacteria will modulate their fatty acid composition in the membrane to cope with …


A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio Mar 2018

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well …