Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson Jul 2016

Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson

Kenneth Nickerson Papers

Most animal–microbe symbiotic interactions must be advantageous to the host and provide nutritional benefits to the endosymbiont. When the host provides nutrients, it can gain the capacity to control the interaction, promote self-growth, and increase its fitness. Chlorella-like green algae engage in symbiotic relationships with certain protozoans, a partnership that significantly impacts the physiology of both organisms. Consequently, it is often challenging to grow axenic Chlorella cultures after isolation from the host because they are nutrient fastidious and often susceptible to virus infection. We hypothesize that the establishment of a symbiotic relationship resulted in natural selection for nutritional and metabolic …


Killer Toxin From Several Food-Derived Debaryomyces Hansenii Strains Effective Against Pathogenic Candida Yeasts, Nabaraj Banjara, Kenneth Nickerson, Mallory J. Suhr, Heather E. Hallen-Adams Jan 2016

Killer Toxin From Several Food-Derived Debaryomyces Hansenii Strains Effective Against Pathogenic Candida Yeasts, Nabaraj Banjara, Kenneth Nickerson, Mallory J. Suhr, Heather E. Hallen-Adams

Kenneth Nickerson Papers

Candida yeasts are the dominant fungi in the healthy human microbiome, but are well-known for causing disease following a variety of perturbations. Evaluation of fungal populations from the healthy human gut revealed a significant negative correlation between the foodborne yeast, Debaryomyces hansenii, and Candida species. D. hansenii is reported to produce killer toxins (mycocins) effective against other yeast species. In order to better understand this phenomenon, a collection of 42 D. hansenii isolates was obtained from 22 cheeses and evaluated for killer activity against Candida albicans and Candida tropicalis over a range of temperatures and pH values. Twenty three …