Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Cell Biology

Institution
Keyword
Publication Year
Publication

Articles 1 - 13 of 13

Full-Text Articles in Pathogenic Microbiology

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Histidine-Triad Hydrolases Provide Resistance To Peptide-Nucleotide Antibiotics., Eldar Yagmurov, Darya Tsibulskaya, Alexey Livenskyi, Marina Serebryakova, Yury I Wolf, Sergei Borukhov, Konstantin Severinov, Svetlana Dubiley Apr 2020

Histidine-Triad Hydrolases Provide Resistance To Peptide-Nucleotide Antibiotics., Eldar Yagmurov, Darya Tsibulskaya, Alexey Livenskyi, Marina Serebryakova, Yury I Wolf, Sergei Borukhov, Konstantin Severinov, Svetlana Dubiley

Rowan-Virtua School of Osteopathic Medicine Faculty Scholarship

The Escherichia coli microcin C (McC) and related compounds are potent Trojan horse peptide-nucleotide antibiotics. The peptide part facilitates transport into sensitive cells. Inside the cell, the peptide part is degraded by nonspecific peptidases releasing an aspartamide-adenylate containing a phosphoramide bond. This nonhydrolyzable compound inhibits aspartyl-tRNA synthetase. In addition to the efficient export of McC outside the producing cells, special mechanisms have evolved to avoid self-toxicity caused by the degradation of the peptide part inside the producers. Here, we report that histidine-triad (HIT) hydrolases encoded in biosynthetic clusters of some McC homologs or by standalone genes confer resistance to McC-like …


Combating Drug Resistance - Comparison Of The Antibiotic Effect Of Hydrastis Canadensis Extract And Pure Berberine Via Minimum Inhibitory Concentration Assay, William Luke Scott, Timothy D. Trott Apr 2019

Combating Drug Resistance - Comparison Of The Antibiotic Effect Of Hydrastis Canadensis Extract And Pure Berberine Via Minimum Inhibitory Concentration Assay, William Luke Scott, Timothy D. Trott

Research in Biology

Herbal medicines are a melee of complex organic chemicals, making it difficult to ascertain their direct mechanism of action. In contrast to mainstream pharmaceuticals, it is argued that herbal medicines are effective because of multiple constituents working synergistically. The complexity of herbal medicines may give them advantages over simpler pharmaceuticals in combating antibiotic resistant microbes, but these advantages can be difficult to quantitate. Popular literature frequently espouses the healing properties of herbal medicines, but many of these claims are not scientifically supported. Many gains could be realized in public health and medicine if more research was aimed at validating / …


Assembly-Hub Function Of Er-Localized Snare Proteins In Biogenesis Of Tombusvirus Replication Compartment, Zsuzsanna Sasvari, Nikolay Kovalev, Paulina Alatriste Gonzalez, Kai Xu, Peter D. Nagy May 2018

Assembly-Hub Function Of Er-Localized Snare Proteins In Biogenesis Of Tombusvirus Replication Compartment, Zsuzsanna Sasvari, Nikolay Kovalev, Paulina Alatriste Gonzalez, Kai Xu, Peter D. Nagy

Plant Pathology Faculty Publications

Positive-strand RNA viruses assemble numerous membrane-bound viral replicase complexes within large replication compartments to support their replication in infected cells. Yet the detailed mechanism of how given subcellular compartments are subverted by viruses is incompletely understood. Although, Tomato bushy stunt virus (TBSV) uses peroxisomal membranes for replication, in this paper, we show evidence that the ER-resident SNARE (soluble NSF attachment protein receptor) proteins play critical roles in the formation of active replicase complexes in yeast model host and in plants. Depletion of the syntaxin 18-like Ufe1 and Use1, which are components of the ER SNARE complex in the ERAS (ER …


Defining Environmental Stresses That Activate The Rna Repair Operon In Salmonella Typhimurium, Caleb M. Gulledge Mar 2016

Defining Environmental Stresses That Activate The Rna Repair Operon In Salmonella Typhimurium, Caleb M. Gulledge

Honors Program Projects

Background

RNA polymerase holoenzyme (Eσ) mediates transcription in eubacteria, and is composed of five constant subunits (α2ββ’ω) and a variable sigma (σ) subunit that is responsible for promoter recognition and initiation of transcription. An alternative sigma factor in Salmonella Typhimurium, σ54 (also called RpoN), is mechanistically different than classical σ70-type sigmas, requiring a different promoter consensus sequence, an activator, and ATP hydrolysis. The Rtc RNA repair operon lies within the regulon of RpoN in S. Typhimurium, but has no known physiological function. Previous work characterized similar systems in archaea and humans, which were determined to …


Chlorovirus Skp1 And Core Ankyrin-Repeat Protein Interplay And Mimicry Of Cellular Ubiquitin Ligase Machinery, Eric Andrew Noel Jun 2014

Chlorovirus Skp1 And Core Ankyrin-Repeat Protein Interplay And Mimicry Of Cellular Ubiquitin Ligase Machinery, Eric Andrew Noel

School of Biological Sciences: Dissertations, Theses, and Student Research

The ubiquitin-proteasome system is a common target of several unrelated viruses that have evolved convergent strategies to redirect host ubiquitin machinery to serve their own needs. Members of the genus Chlorovirus, a group of large dsDNA viruses that infect certain freshwater chlorella-like green algae, encode a conserved Skp1 homolog and ankyrin-repeat (ANK) proteins, some of which contain C-terminal domains characteristic of cellular F-boxes or related viral PRANC domains. These observations suggested that this unique combination of chlorovirus proteins either interact with or imitate the key components of the SCF (Skp1-Cul1-F-box) ubiquitin ligases. Using mass spectrometry, we identified two functional …


Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr. Jan 2013

Detection Of Viable Microorganisms Using Propidium Monoazide, Erik J. Mcfarland, Adrian Ponce Dr.

STAR Program Research Presentations

Propidium monoazide (PMA) is a molecular tool used to assess viability of microorganisms. Currently, PMA is thought to discern viability through membrane permeability; PMA enters only membrane compromised cells, irreversibly crosslinks to theirDNAand precipitates theDNAout of solution, preventing it from being amplified during polymerase chain reaction (PCR). Using PMA on a sample of live and dead microorganisms results in only theDNAof living organisms being amplified and identified. Therefore, a comparison ofPCRresults with and without PMA allows one to determine the live fraction and total population, respectively.

Current literature provides conflicting evidence as to the effectiveness of the technique. Our research …


Inhibition Of Burkholderia Multivorans Adhesion To Lung Epithelial Cells By Bivalent Lactosides, Ciara Wight, Rosaria Leyden, Paul V. Murphy, Máire Callaghan, Trinidad Velasco-Torrijos, Siobhan Mcclean Aug 2012

Inhibition Of Burkholderia Multivorans Adhesion To Lung Epithelial Cells By Bivalent Lactosides, Ciara Wight, Rosaria Leyden, Paul V. Murphy, Máire Callaghan, Trinidad Velasco-Torrijos, Siobhan Mcclean

Articles

Burkholderia cepacia complex (Bcc) is an opportunistic pathogen in cystic fibrosis patients which is inherently resistant to antimicrobial agents. The mechanisms of attachment and pathogenesis of Bcc, a group of 17 species, are poorly understood. The most commonly identified Bcc species in newly colonised patients, Burkholderia multivorans, continues to be acquired from the environment. Development of therapies which can prevent or reduce the risk of colonization on exposure to Bcc in the environment would be a better alternative to antimicrobial agents. Previously, it has been shown that Bcc strains bound to many glycolipid receptors on lung epithelia. Using a …


Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser May 2012

Host Pathogen Interactions: Is Arabidopsis Thaliana Remembered By Its Nemesis Pseudomonas Syringae?, Daniel Z. Kreiser

Lawrence University Honors Projects

Plants contain innate immune systems that deter pathogen infection. Pattern recognition receptors bind microbe-associated molecular patterns (MAMPs), triggering immunity. MAMPs are proteins exclusive to pathogens that are typically indispensable for their survival. For this reason, MAMPs cannot be mutated or removed without causing pathogen death. However, this does not necessitate constitutive expression of MAMPs. In this study, the MAMP response of Arabidopsis thaliana was utilized to determine differential detection of MAMPs expressed by Pseudomonas syringe pv. tomato DC3000 when pretreated with A. thaliana. Results demonstrated that more MAMPs are detected when P. syringae had previously encountered A. thaliana, …


Activation Of Mmp-9 By Human Lung Epithelial Cells In Response To The Cystic Fibrosis-Associated Pathogen Burkholderia Cenocepacia Reduced Wound Healing In Vitro, Ciara Wright ], Ruth Pilkington, Máire Callaghan, Siobhan Mcclean Oct 2011

Activation Of Mmp-9 By Human Lung Epithelial Cells In Response To The Cystic Fibrosis-Associated Pathogen Burkholderia Cenocepacia Reduced Wound Healing In Vitro, Ciara Wright ], Ruth Pilkington, Máire Callaghan, Siobhan Mcclean

Articles

Burkholderia cepacia complex is a group of bacterial pathogens that cause opportunistic infections in cystic fibrosis (CF). The most virulent of these is Burkholderia cenocepacia. Matrix metalloproteinases (MMPs) are upregulated in CF patients. The aim of this work was to examine the role of MMPs in the pathogenesis of B. cepacia complex, which has not been explored to date. Real-time PCR analysis showed that B. cenocepacia infection upregulated MMP-2 and MMP-9 genes in the CF lung cell line CFBE41o- within 1 h, whereas MMP-2, -7, and -9 genes were upregulated in the non-CF lung cell line 16HBE14o-. Conditioned media from …


Pattern Recognition In Cytopathology For Papanicolaou Screening, Jonathan Blackledge, Dmitriy Dubovitskiy Jan 2010

Pattern Recognition In Cytopathology For Papanicolaou Screening, Jonathan Blackledge, Dmitriy Dubovitskiy

Conference papers

A unique space oriented filer is presented in order to detect and isolate the cell of a nucleus for applications in cytopathology. A classification method for nuclei is then considered based on the application of a set of features which includes certain fractal parameters. Segmentation algorithms are considered in which a self-adjustable sharpening filter is designed to enhance object location. Although the methods discussed and the algorithms developed have a range of applications, in this work we focus the engineering of a system for automating a Papanicolaou screening test using standard optical images


Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom Dec 2007

Genome-Wide Transcriptional Profiling Of The Cyclic Amp-Dependent Signaling Pathway During Morphogenic Transitions Of Candida Albicans, Yong-Sun Bahn, Matthew Molenda, Janet F. Staab, Courtney A. Lyman, Laura J. Gordon, Paula Sundstrom

Dartmouth Scholarship

Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. …


Recovery Of Rna Polymerase Ii Synthesis Following Dna Damage In Mutants Of Saccharomyces Cerevisiae Defective In Nucleotide Excision Repair, Michael S. Reagan, Errol C. Friedberg Nov 1997

Recovery Of Rna Polymerase Ii Synthesis Following Dna Damage In Mutants Of Saccharomyces Cerevisiae Defective In Nucleotide Excision Repair, Michael S. Reagan, Errol C. Friedberg

Biology Faculty Publications

We have measured the kinetics of the recovery of mRNA synthesis in the inducible GAL10 and RNR3 genes after exposure of yeast cells to ultraviolet (UV) radiation. Such recovery is abolished in mutant strains defective in nucleotide excision repair (NER) of DNA, including a rad23 mutant. Mutants defective in the RAD7 or RAD16 genes, which are required for the repair of the non-transcribed strand but not the transcribed strand of transcriptionally active genes, show slightly faster recovery of RNA synthesis than wild-type strains. A strain deleted of the RAD26 gene, which is known to be required for strand-specific NER in …