Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

Multipatch Stochastic Epidemic Model For The Dynamics Of A Tick-Borne Disease, Milliward Maliyoni, Holly D. Gaff, Keshlan S. Govinder, Faraimunashe Chirove Jan 2023

Multipatch Stochastic Epidemic Model For The Dynamics Of A Tick-Borne Disease, Milliward Maliyoni, Holly D. Gaff, Keshlan S. Govinder, Faraimunashe Chirove

Biological Sciences Faculty Publications

Spatial heterogeneity and migration of hosts and ticks have an impact on the spread, extinction and persistence of tick-borne diseases. In this paper, we investigate the impact of between-patch migration of white-tailed deer and lone star ticks on the dynamics of a tick-borne disease with regard to disease extinction and persistence using a system of Itô stochastic differential equations model. It is shown that the disease-free equilibrium exists and is unique. The general formula for computing the basic reproduction number for all patches is derived. We show that for patches in isolation, the basic reproduction number is equal to the …


Frankenbacteriosis Targeting Interactions Between Pathogen And Symbiont To Control Infection In The Tick Vector, Lorena Mazuecos, Pilar Alberdi, Angélica Hernández-Jarguín, Marinela Contreras, Margarita Villar, Alejandro Cabezas-Cruz, Ladislav Simo, Almudena González-García, Sandra Díaz-Sánchez, Girish Neelakanta, Sarah I. Bonnet, Erol Fikrig, José De La Fuente Jan 2023

Frankenbacteriosis Targeting Interactions Between Pathogen And Symbiont To Control Infection In The Tick Vector, Lorena Mazuecos, Pilar Alberdi, Angélica Hernández-Jarguín, Marinela Contreras, Margarita Villar, Alejandro Cabezas-Cruz, Ladislav Simo, Almudena González-García, Sandra Díaz-Sánchez, Girish Neelakanta, Sarah I. Bonnet, Erol Fikrig, José De La Fuente

Biological Sciences Faculty Publications

(Summary) Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection …