Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Pathogenic Microbiology

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Mara Repression Of Virulence Gene Hila In Salmonella, Alexandra King, Lauren Daugherty, Lon Chubiz Phd Sep 2021

Mara Repression Of Virulence Gene Hila In Salmonella, Alexandra King, Lauren Daugherty, Lon Chubiz Phd

Undergraduate Research Symposium

Salmonella is a bacteria most commonly known for causing the eponymous food-related illness. Due to their rapid reproduction rate and their ability to be propogated and maintained in a lab setting, they are commonly used in lab studies so that we can better understand how Salmonella causes disease in organisms that are more difficult to study. One area of interest is analyzing how Salmonella controls expression of the mechanisms that actually cause disease, called virulence traits, in response to the environment. In this study, antibiotic stress was used to analyze virulence gene expression. MarA is a gene that regulates ampicillin …


Nutritional Virulence Of Legionella Pneumophila., Ashley M. Best May 2018

Nutritional Virulence Of Legionella Pneumophila., Ashley M. Best

Electronic Theses and Dissertations

Legionella pneumophila is an environment organism that parasitizes a wide range of protozoa. Growth within the environmental host primes L. pneumophila for infection of human alveolar macrophages when contaminated aerosols are inhaled. Intracellular replication within either host requires the establishment a replicative niche, known as the Legionella-containing vacuole (LCV). Biogenesis of the LCV depends on the type IVb translocation system, the Dot/Icm, to translocation >320 effectors into the host cytosol. Effectors are responsible for preventing lysosome fusion to the LCV, recruitment of ER-derived vesicles to the LCV, and modulation of a plethora of host processes to promote the intracellular …


A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio Mar 2018

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well …


Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian Mar 2013

Pseudomonas Aeruginosa Ampr Transcriptional Regulatory Network, Deepak Balasubramanian

FIU Electronic Theses and Dissertations

In Enterobacteriaceae, the transcriptional regulator AmpR, a member of the LysR family, regulates the expression of a chromosomal β-lactamase AmpC. The regulatory repertoire of AmpR is broader in Pseudomonas aeruginosa, an opportunistic pathogen responsible for numerous acute and chronic infections including cystic fibrosis. Previous studies showed that in addition to regulating ampC, P. aeruginosa AmpR regulates the sigma factor AlgT/U and production of some quorum sensing (QS)-regulated virulence factors. In order to better understand the ampR regulon, the transcriptional profiles generated using DNA microarrays and RNA-Seq of the prototypic P. aeruginosa PAO1 strain with its isogenic ampR deletion …