Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio Mar 2018

A Comparison Of Oral And Intravenous Mouse Models Of Listeriosis, Michelle G. Pitts, Sarah E. F. D'Orazio

Microbiology, Immunology, and Molecular Genetics Faculty Publications

Listeria monocytogenes is one of several enteric microbes that is acquired orally, invades the gastric mucosa, and then disseminates to peripheral tissues to cause systemic disease in humans. Intravenous (i.v.) inoculation of mice with L. monocytogenes has been the most widely-used small animal model of listeriosis over the past few decades. The infection is highly reproducible and has been invaluable in deciphering mechanisms of adaptive immunity in vivo, particularly CD8+ T cell responses to intracellular pathogens. However, the i.v. model completely bypasses the gut phase of the infection. Recent advances in generating both humanized mice and murinized bacteria, as well …


Comparison Between Listeria Sensu Stricto And Listeria Sensu Lato Strains Identifies Novel Determinants Involved In Infection, Jakob Schardt, Grant Jones, Stefanie Müller-Herbst, Kristina Schauer, Sarah E. F. D'Orazio, Thilo M. Fuchs Dec 2017

Comparison Between Listeria Sensu Stricto And Listeria Sensu Lato Strains Identifies Novel Determinants Involved In Infection, Jakob Schardt, Grant Jones, Stefanie Müller-Herbst, Kristina Schauer, Sarah E. F. D'Orazio, Thilo M. Fuchs

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the "Listeria sensu stricto" clade. The members of the second clade, "Listeria sensu lato", are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were …


The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry Jul 2017

The Feoabc Locus Of Yersinia Pestis Likely Has Two Promoters Causing Unique Iron Regulation, Lauren O'Connor, Jacqueline D. Fetherston, Robert D. Perry

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The FeoABC ferrous transporter is a wide-spread bacterial system. While the feoABC locus is regulated by a number of factors in the bacteria studied, we have previously found that regulation of feoABC in Yersinia pestis appears to be unique. None of the non-iron responsive transcriptional regulators that control expression of feoABC in other bacteria do so in Y. pestis. Another unique factor is the iron and Fur regulation of the Y. pestis feoABC locus occurs during microaerobic but not aerobic growth. Here we show that this unique iron-regulation is not due to a unique aspect of the Y. pestis …


Changes In Bacterial Growth Rate Govern Expression Of The Borrelia Burgdorferi Ospc And Erp Infection-Associated Surface Proteins, Brandon L. Jutras, Alicia M. Chenail, Brian Stevenson Feb 2013

Changes In Bacterial Growth Rate Govern Expression Of The Borrelia Burgdorferi Ospc And Erp Infection-Associated Surface Proteins, Brandon L. Jutras, Alicia M. Chenail, Brian Stevenson

Microbiology, Immunology, and Molecular Genetics Faculty Publications

The Lyme disease spirochete controls production of its OspC and Erp outer surface proteins, repressing protein synthesis during colonization of vector ticks but increasing expression when those ticks feed on vertebrate hosts. Early studies found that the synthesis of OspC and Erps can be stimulated in culture by shifting the temperature from 23°C to 34°C, leading to a hypothesis that Borrelia burgdorferi senses environmental temperature to determine its location in the tick-mammal infectious cycle. However, borreliae cultured at 34°C divide several times faster than do those cultured at 23°C. We developed methods that disassociate bacterial growth rate and temperature, allowing …