Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of Pseudomonas Aeruginosa, Dustin Esmond Sep 2021

Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of Pseudomonas Aeruginosa, Dustin Esmond

Biology Theses

Increasing prevalence of nosocomial infections by antimicrobial resistant pathogens resulting in higher mortality rates and financial burden is of great concern. Pseudomonas aeruginosa represents one of six highly virulent “ESKAPE” pathogens that exhibit considerable intrinsic drug resistance as well as mechanisms for acquiring further resistance. As many of these mechanisms are regulated through gene expression, we sought to identify regulatory strategies and patterns at play in 23 clinical isolates collected from Baku, Azerbaijan and Tyler, Texas, USA. Real-time quantitative polymerase chain reaction was performed on six gene targets implicated in resistance and contrasted with antibiotic phenotypes. We found AmpC cephalosporinase …


Increasing Antibiotic Resistance In Shigella Bacteria In The United States, William J. Pharr Nov 2020

Increasing Antibiotic Resistance In Shigella Bacteria In The United States, William J. Pharr

The Corinthian

Shigella bacteria cause half a million infections, 6,000 hospitalizations, and 70 deaths annually in the United States. These bacteria are of particular concern due to their high survivability, low infectious dose, and high adaptability. Cases of shigellosis from Shigella sonnei are becoming a more prevalent issue in the U.S. as the bacteria continues to develop higher resistance to today’s strongest antibiotics. Much of this resistance is connected to the exchange of genes between strains of Shigella due to insertion sequences (IS), intercontinental travel, and men who have sex with men (MSM). As a result of increased resistance, the use of …


Investigating Antibiotic Resistance Levels Of Salmonella Internalized In Lettuce Leaves, Jason B. Thomas May 2014

Investigating Antibiotic Resistance Levels Of Salmonella Internalized In Lettuce Leaves, Jason B. Thomas

McNair Scholars Research Journal

Contamination of food crops by the human pathogen Salmonella is a food safety threat worldwide. Though using treated wastewater for irrigation is a sustainable practice, it may introduce trace levels of Salmonella that may contaminate food crops. Salmonella could develop resistance to antibiotics present in wastewater. The overall goal of the project is to increase the understanding of the public health risk associated with the use of treated wastewater to irrigate food crops. The objective of this particular study is to determine the antibiotic resistance level of Salmonella internalized in lettuce leaves. In this experiment, thirty-six plants of the lettuce …