Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Pathogenic Microbiology

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell Jan 2024

Host-Defense Piscidin Peptides As Antibiotic Adjuvants Against Clostridioides Difficile, Adenrele Oludiran, Areej Malik, Andriana C. Zourou, Yonghan Wu, Steven P. Gross, Albert Siryapon, Asia Poudel, Kwincy Alleyne, Savion Adams, David S. Courson, Myriam L. Cotten, Erin B. Purcell

Chemistry & Biochemistry Faculty Publications

The spore-forming intestinal pathogen Clostridioides difficile causes multidrug resistant infection with a high rate of recurrence after treatment. Piscidins 1 (p1) and 3 (p3), cationic host defense peptides with micromolar cytotoxicity against C. difficile, sensitize C. difficile to clinically relevant antibiotics tested at sublethal concentrations. Both peptides bind to Cu2+ using an amino terminal copper and nickel binding motif. Here, we investigate the two peptides in the apo and holo states as antibiotic adjuvants against an epidemic strain of C. difficile. We find that the presence of the peptides leads to lower doses of …


Listeria Adhesion Protein Orchestrates Caveolae-Mediated Apical Junctional Remodeling Of Epithelial Barrier For Listeria Monocytogenes Translocation, Rishi Drolia, Donald B. Bryant, Shivendra Tenguria, Zuri A. Jules-Culver, Jessie Thind, Breanna Amelunke, Donqi Liu, Nicholas L. F. Gallina, Krishna K. Mishra, Manalee Samaddar, Manoj R. Sawale, Dharmendra K. Mishra, Abigail D. Cox, Arun K. Bhunia Jan 2024

Listeria Adhesion Protein Orchestrates Caveolae-Mediated Apical Junctional Remodeling Of Epithelial Barrier For Listeria Monocytogenes Translocation, Rishi Drolia, Donald B. Bryant, Shivendra Tenguria, Zuri A. Jules-Culver, Jessie Thind, Breanna Amelunke, Donqi Liu, Nicholas L. F. Gallina, Krishna K. Mishra, Manalee Samaddar, Manoj R. Sawale, Dharmendra K. Mishra, Abigail D. Cox, Arun K. Bhunia

Biological Sciences Faculty Publications

The cellular junctional architecture remodeling by Listeria adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for Listeria monocytogenes (Lm) passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that Lm crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic (lap− or ΔinlA) or double (lap−ΔinlA) mutant strains show significant defects. LAP promotes Lm translocation via endocytosis of cell-cell junctional complex in enterocytes that do not display luminal E-cadherin. In comparison, InlA facilitates …


Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield May 2023

Elucidating The Impact Of Sos-Response Timing In On Escherichia Coli Survival Following Treatment With Fluoroquinolone Topoisomerase Inhibitors, Stephanie Schofield

Honors Scholar Theses

Antibiotic treatment failure is a public health crisis, with a 2019 report stating that roughly 35,000 deaths occur in the United States yearly due to bacterial infections that are unresponsive to antibiotics (1). One complication in the treatment of bacterial infection is antibiotic persistence which further compromises our battle to effectively treat infection. Bacterial persisters can exist in clonal bacterial cultures and can tolerate antibiotic treatment by undergoing reversible phenotypic changes. They can survive drug concentrations that their genetically identical kin cannot. Some persisters remain in a slow growing state and are difficult to target with current antibiotics. A specific …


Molecular Surveillance Of Drug Resistance: Plasmodium Falciparum Artemisinin Resistance Single Nucleotide Polymorphisms In Kelch Protein Propeller (K13) Domain From Southern Pakistan, Najia Karim Ghanchi, Bushra Qurashi, Hadiqa Raees, Mohammad Asim Beg Apr 2021

Molecular Surveillance Of Drug Resistance: Plasmodium Falciparum Artemisinin Resistance Single Nucleotide Polymorphisms In Kelch Protein Propeller (K13) Domain From Southern Pakistan, Najia Karim Ghanchi, Bushra Qurashi, Hadiqa Raees, Mohammad Asim Beg

Department of Pathology and Laboratory Medicine

Background: K13 propeller (k13) polymorphism are useful molecular markers for tracking the emergence and spread of artemisinin resistance in Plasmodium falciparum. Polymorphisms are reported from Cambodia with rapid invasion of the population and almost near fixation in south East Asia. The study describes single nucleotide polymorphisms in Kelch protein propeller domain of P. falciparum associated with artemisinin resistance from Southern Pakistan.
Methods: Two hundred and forty-nine samples were collected from patients with microscopy confirmed P. falciparum malaria attending Aga Khan University Hospital during September 2015-April 2018. DNA was isolated using the whole blood protocol for the QIAmp DNA Blood Kit. …


A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter Jun 2019

A Rapid Viability And Drug‑Susceptibility Assay Utilizing Mycobacteriophage As An Indicator Of Drug Susceptibilities Of Anti‑Tb Drugs Against Mycobacterium Smegmatis Mc2 155, Gillian Catherine Crowley, Jim O'Mahony, Aidan Coffey, Riona G. Sayers, Paul D. Cotter

Department of Biological Sciences Publications

Background: A rapid in-house TM4 mycobacteriophage-based assay, to identify multidrug resistance against various anti-tuberculosis drugs, using the fast-growing Mycobacterium smegmatis mc2 155 in a microtiter plate format was evaluated, based on phage viability assays. Methods: A variety of parameters were optimized before the study including the minimum incubation time for the drugs, phage and M. smegmatis mc2 155 to be in contact. An increase in phage numbers over 2 h was indicative that M. smegmatis mc2 155 is resistant to the drugs under investigation, however when phage numbers remained static, M. smegmatis mc2 155 found to …


The Molecular Mechanism Of N-Acetylglucosamine Side-Chain Attachment To The Lancefield Group A Carbohydrate In Streptococcus Pyogenes, Jeffrey Rush, Rebecca J. Edgar, Pan Deng, Jing Chen, Haining Zhu, Nina M. Van Sorge, Andrew J. Morris, Konstantin V. Korotkov, Natalia Korotkova Oct 2017

The Molecular Mechanism Of N-Acetylglucosamine Side-Chain Attachment To The Lancefield Group A Carbohydrate In Streptococcus Pyogenes, Jeffrey Rush, Rebecca J. Edgar, Pan Deng, Jing Chen, Haining Zhu, Nina M. Van Sorge, Andrew J. Morris, Konstantin V. Korotkov, Natalia Korotkova

Molecular and Cellular Biochemistry Faculty Publications

In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are …


The Potential Of Quinoline Derivatives For The Treatment Of Toxoplasma Gondii Infection., Sirinart Ananvoranich Oct 2014

The Potential Of Quinoline Derivatives For The Treatment Of Toxoplasma Gondii Infection., Sirinart Ananvoranich

Chemistry and Biochemistry Publications

Here we reported our investigation, as part of our drug repositioning effort, on anti-Toxoplasma properties of newly synthesized quinoline compounds. A collection of 4-aminoquinoline and 4-piperazinylquinoline analogs have recently been synthesized for use in cancer chemotherapy. Some analogs were able to outperform chloroquine, a quinoline derivative drug which is commonly used in the treatment of malaria and other parasitic infections. Herein 58 compounds containing one or two quinoline rings were examined for their effectiveness as potential anti-Toxoplasma compounds. Of these 58 compounds, 32 were efficient at inhibiting Toxoplasma growth (IC50μM). Five compounds with single and simple quinoline rings exhibited similar …