Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Pathogenic Microbiology

The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin Nov 2016

The Roles Of Biotin In Candida Albicans Physiology, Nur Ras Aini Ahmad Hussin

School of Biological Sciences: Dissertations, Theses, and Student Research

Due to the increased number of immunocompromised patients, infections by Candida albicans have significantly increased in recent years. C. albicans transition from yeast to germ tubes is an essential factor for virulence. In this study we noted that Lee's medium, commonly used to induce filamentation, contained 500-fold more biotin than needed for growth. Thus, we investigated the effects of excess biotin on growth rate and filamentation by C. albicans in different media. At 37 °C, excess biotin (4 µM) enhanced germ tube formation (GTF) ca. 10-fold in both Lee's medium and a defined glucose proline medium, and ca. 4-fold in …


Chlorovirus Skp1 And Core Ankyrin-Repeat Protein Interplay And Mimicry Of Cellular Ubiquitin Ligase Machinery, Eric Andrew Noel Jun 2014

Chlorovirus Skp1 And Core Ankyrin-Repeat Protein Interplay And Mimicry Of Cellular Ubiquitin Ligase Machinery, Eric Andrew Noel

School of Biological Sciences: Dissertations, Theses, and Student Research

The ubiquitin-proteasome system is a common target of several unrelated viruses that have evolved convergent strategies to redirect host ubiquitin machinery to serve their own needs. Members of the genus Chlorovirus, a group of large dsDNA viruses that infect certain freshwater chlorella-like green algae, encode a conserved Skp1 homolog and ankyrin-repeat (ANK) proteins, some of which contain C-terminal domains characteristic of cellular F-boxes or related viral PRANC domains. These observations suggested that this unique combination of chlorovirus proteins either interact with or imitate the key components of the SCF (Skp1-Cul1-F-box) ubiquitin ligases. Using mass spectrometry, we identified two functional …


Thoughts On Quorum Sensing And Fungal Dimorphism, Kenneth W. Nickerson, Audrey L. Atkin, Jessica C. Hargarten, Ruvini U. Pathirana, Sahar Hasim Jan 2012

Thoughts On Quorum Sensing And Fungal Dimorphism, Kenneth W. Nickerson, Audrey L. Atkin, Jessica C. Hargarten, Ruvini U. Pathirana, Sahar Hasim

Papers in Microbiology

Farnesol has been best studied for its role in regulating fungal dimorphism. However, farnesol is also a lipid and in this review we analyze data relevant to farnesol’s function and synthesis from the perspective of farnesol and bacterial endotoxins acting as membrane active compounds. This analysis implicates the possible roles of: (1) endotoxins in the regulation of farnesol production by C. albicans; (2) farnesol in the interactions between C. albicans and the host during disseminated infections; and (3) ubiquinones in the mechanisms for unusually high resistance to farnesol by some C. albicans cell types. Finally we discuss the implications …


Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe Aug 2011

Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

The filamentous fungus, Magnaporthe oryzae, responsible for blast rice disease, destroys around 10-30% of the rice crop annually. Infection begins when the specialized infection structure, the appressorium, generates enormous internal turgor pressure through the accumulation of glycerol. This turgor acts on a penetration peg emerging at the base of the cell, causing it to breach the leaf surface allowing its infection.

The enzyme trehalose-6- phosphate synthase (Tps1) is a central regulator of the transition from appressorium development to infectious hyphal growth. In the first chapter we show that initiation of rice blast disease requires a regulatory mechanism involving an …