Open Access. Powered by Scholars. Published by Universities.®

Pathogenic Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Biology

PDF

FIU Electronic Theses and Dissertations

Series

Pseudomonas aeruginosa

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Pathogenic Microbiology

Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke Nov 2016

Elucidating The Role Of Mifs-Mifr Two-Component System In Regulating Pseudomonas Aeruginosa Pathogenicity, Gorakh Digambar Tatke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a Gram-negative, metabolically versatile, opportunistic pathogen that exhibits a multitude of virulence factors, and is extraordinarily resistant to a gamut of clinically significant antibiotics. This ability is in part mediated by two-component systems (TCS) that play a crucial role in regulating virulence mechanisms, metabolism and antibiotic resistance. Our sequence analysis of the P. aeruginosa PAO1 genome revealed the presence of two open reading frames, mifS and mifR, which encodes putative TCS proteins, a histidine sensor kinase MifS and a response regulator MifR, respectively. This two-gene operon was found immediately upstream of the poxAB operon, where poxB encodes …


Characterization Of The Poxab Operon Encoding A Class D Carbapenemase In Pseudomonas Aeruginosa,, Diansy Zincke Mar 2015

Characterization Of The Poxab Operon Encoding A Class D Carbapenemase In Pseudomonas Aeruginosa,, Diansy Zincke

FIU Electronic Theses and Dissertations

Pseudomonas aeruginosa is a dreaded opportunistic pathogen that causes severe and often intractable infections in immunocompromised and critically ill patients. This bacterium is also the primary cause of fatal lung infections in patients with cystic fibrosis and a leading nosocomial pathogen responsible for nearly 10% of all hospital-acquired infections. P. aeruginosa is intrinsically recalcitrant to most classes of antibiotics and has the ability to acquire additional resistance during treatment. In particular, resistance to the widely used β-lactam antibiotics is frequently mediated by the expression of AmpC, a chromosomally encoded β-lactamase that is ubiquitously found in P. aeruginosa strains. This dissertation …