Open Access. Powered by Scholars. Published by Universities.®

Other Microbiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Other Microbiology

Functions Of The Trna Splicing Endonuclease And Other Adventures In Rna Processing, Jennifer Hurtig, Ambro Van Hoof May 2023

Functions Of The Trna Splicing Endonuclease And Other Adventures In Rna Processing, Jennifer Hurtig, Ambro Van Hoof

Dissertations & Theses (Open Access)

The tRNA splicing endonuclease (TSEN), has been studied for over three decades for its function in tRNA splicing. However, this enzyme has other functions that are just beginning to be characterized. Mutations in TSEN cause the neuronal disease pontocerebellar hypoplasia (PCH) that is characterized by atrophy of the cerebellum and pons, overall developmental failure, and usually results in death before adolescence. How mutations in TSEN cause these neuronal defects and disease is not understood. In yeast, TSEN has another essential function that is independent of tRNA splicing and is still unknown. In this thesis I strived to understand the other …


Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy May 2019

Thiol-Based Misfolding: Linking Redox Balance To Cytosolic Proteostasis, Ford Amy

Dissertations & Theses (Open Access)

The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants and xenobiotics. Cysteine-containing proteins are especially at risk as the thiol side chain is subject to oxidation, adduction and chelation by thiol-reactive compounds. All of these thiol-modifiers have been demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of thiol stress toxicity responsible for these outcomes are largely unknown. Furthermore, I hypothesize proteins identified as redox-active are prone to misfolding and aggregation by thiol-specific …


Mechanism Of Incorporation And Repair Of Uracil At Highly Transcribed Genes In Saccharomyces Cerevisiae, Norah Auma Owiti Aug 2018

Mechanism Of Incorporation And Repair Of Uracil At Highly Transcribed Genes In Saccharomyces Cerevisiae, Norah Auma Owiti

Dissertations & Theses (Open Access)

Recombination and mutagenesis are elevated by high levels of transcription. The correlation between transcription and genome instability is largely explained by the topological and structural changes in DNA and the associated physical obstacles generated by the transcription machinery. However, such explanation does not directly account for the unique types of mutations originating from the non-canonical residues such as uracil, which are also elevated at highly transcribed regions. Apurinic/Apyrimic or Abasic (AP) sites derived from uracil excision, accumulate at a higher rate in actively transcribed regions of the genome in S. cerevisiae and are primarily repaired by base excision repair (BER) …


Functional Consequences Of Rna Exosome Complex Alteration By Conformational Changes And Cofactor Binding, Jaeil Han Aug 2017

Functional Consequences Of Rna Exosome Complex Alteration By Conformational Changes And Cofactor Binding, Jaeil Han

Dissertations & Theses (Open Access)

The RNA exosome is an essential 3’-5 ribonuclease that processes or degrades a variety of RNA species in eukaryotes. It is composed of nine structural cores and one catalytic subunit, Rrp44. Structural studies captured two different conformations of Rrp44, Rrp44ch (channel) and Rrp44da (direct-access). The Rrp44ch appears to recruit RNA substrates from the central channel formed by the core subunits, while the substrate is directly recruited to Rrp44da bypassing the central channel. Although in vivo function of the Rrp44ch-exosome is extensively studied, the function or even the presence of the Rrp44da-exosome in …


Development Of A Molecular Gram-Stain Assay For The Diagnosis Of Blood Stream Infections Associated With Sepsis, Douglas Bryan Litwin Aug 2014

Development Of A Molecular Gram-Stain Assay For The Diagnosis Of Blood Stream Infections Associated With Sepsis, Douglas Bryan Litwin

Dissertations & Theses (Open Access)

Sepsis is a serious medical condition resulting from the severe dysregulation of the immune response that is generally triggered by infection. It affects more than 1.1 million Americans, has an average mortality rate of 30%, and is estimated to cost $24.3 billion annually. Currently, blood culture followed by Gram-stain analysis is the gold standard for diagnosing bacterial infections associated with sepsis. This method generates a high rate of false negative results and, in general, requires 20 to 48 hr to provide results. Both of these problems are related to the requirement that the bacterial pathogens grow under defined laboratory conditions. …


The Role Of The Arched Helicases In Exosome-Mediated Function, A. Alejandra Klauer Dec 2012

The Role Of The Arched Helicases In Exosome-Mediated Function, A. Alejandra Klauer

Dissertations & Theses (Open Access)

RNA processing and degradation are two important functions that control gene expression and promote RNA fidelity in the cell. A major ribonuclease complex, called the exosome, is involved in both of these processes. The exosome is composed of ten essential proteins with only one catalytically active subunit, called Rrp44. While the same ten essential subunits make up both the nuclear and cytoplasmic exosome, there are nuclear and cytoplasmic exosome cofactors that promote specific exosome functions in each of the cell compartments. To date, it is unclear how the exosome distinguishes between RNA substrates. We hypothesize that compartment specific cofactors may …


The Domains Of The Catalytic Subunit Of The Eukaryotic Rna Degrading Exosome, Rrp44p, Have Distinct Functions, Daneen Schaeffer Aug 2010

The Domains Of The Catalytic Subunit Of The Eukaryotic Rna Degrading Exosome, Rrp44p, Have Distinct Functions, Daneen Schaeffer

Dissertations & Theses (Open Access)

The exosome is a 3’ to 5’ exoribonuclease complex that consists of ten essential subunits. In the cytoplasm, the exosome degrades mRNA in a general mRNA turnover pathway and in several mRNA surveillance pathways. In the nucleus, the exosome processes RNA precursors to form small, stable, mature RNA species, including rRNA, snRNA, and snoRNA. In addition to processing these RNAs, the nuclear exosome is also involved in degrading aberrantly processed forms of these RNAs, and others, including mRNA.

The 3’ to 5’ exoribonuclease activity of the exosome is contributed by the RNB domain of the only catalytically active subunit, Rrp44p, …