Open Access. Powered by Scholars. Published by Universities.®

Organismal Biological Physiology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Organismal Biological Physiology

Expansion Of And Reclassification Within The Family Lachnospiraceae, Kelly N. Haas Nov 2016

Expansion Of And Reclassification Within The Family Lachnospiraceae, Kelly N. Haas

Doctoral Dissertations

Many of the taxa in the family Lachnospiraceae are currently misclassified as Clostridium spp. Here attempt to rectify many of these issues, beginning with an in-depth genomic and physiologic analysis of Clostridium methoxybenzovorans, culminating in the assertion that is a heterotype of Clostridium indolis, followed by reclassification of the broader group in which this organism resides. We propose two novel genera, Lacriformis and Enterocloster, to reclassify this clade, this includes reclassification of Clostridium sphenoides, Clostridium indolis, Clostridium saccharolyticum, Clostridium celerecrescens, Clostridium xylanolyticum, Clostridium algidixylanolyticum, Clostridium aerotolerans, Clostridium amygdalinum, and …


Toxicity Of Engineered Nanomaterials To Plant Growth Promoting Rhizobacteria, Ricky W. Lewis Jan 2016

Toxicity Of Engineered Nanomaterials To Plant Growth Promoting Rhizobacteria, Ricky W. Lewis

Theses and Dissertations--Plant and Soil Sciences

Engineered nanomaterials (ENMs) have become ubiquitous in consumer products and industrial applications, and consequently the environment. Much of the environmentally released ENMs are expected to enter terrestrial ecosystems via land application of nano-enriched biosolids to agricultural fields. Among the organisms most likely to encounter nano-enriched biosolids are the key soil bacteria known as plant growth promoting rhizobacteria (PGPR). I reviewed what is known concerning the toxicological effects of ENMs to PGPR and observed the need for high-throughput methods to evaluate lethal and sublethal toxic responses of aerobic microbes. I addressed this issue by developing high-throughput microplate assays which allowed me …