Open Access. Powered by Scholars. Published by Universities.®

Biomechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering

2017

Institution
Keyword
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Biomechanics

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt Dec 2017

Characterizing Anisotropy In Fibrous Soft Materials By Mr Elastography Of Slow And Fast Shear Waves, John Larson Schmidt

McKelvey School of Engineering Theses & Dissertations

The general objective of this work was to develop experimental methods based on magnetic resonance elastography (MRE) to characterize fibrous soft materials. Mathematical models of tissue biomechanics capable of predicting injury, such as traumatic brain injury (TBI), are of great interest and potential. However, the accuracy of predictions from such models depends on accuracy of the underlying material parameters. This dissertation describes work toward three aims. First, experimental methods were designed to characterize fibrous materials based on a transversely isotropic material model. Second, these methods are applied to characterize the anisotropic properties of white matter brain tissue ex vivo. Third, …


Rehabilitating Asymmetric Gait Using Asymmetry, Tyagi Ramakrishnan Nov 2017

Rehabilitating Asymmetric Gait Using Asymmetry, Tyagi Ramakrishnan

USF Tampa Graduate Theses and Dissertations

Human gait is a complex process that involves the coordination of the central nervous and muscular systems. A disruption to the either system results in the impairment of a person’s ability to walk. Impairments can be caused by neurological disorders such as stroke and physical conditions like amputation. There is not a standardized method to quantitatively assess the gait asymmetry of affected subjects. The purpose of this research is to understand the fundamental aspects of asymmetrical effects on the human body and improve rehabilitation techniques and devices. This research takes an interdisciplinary approach to address the limitations with current rehabilitation …


Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi Aug 2017

Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi

McKelvey School of Engineering Theses & Dissertations

Cell clusters reside in complex extracellular matrices (ECMs) of varying mechanical properties. Epithelial cells sense and translate the mechanical cues presented by the surrounding ECM into biochemical signals through a process called ‘mechanotransduction’, which controls fundamental aspects of disease and development. During the course of metastasis, mechanical changes in the tumor microenvironment can lead to declustering of epithelial cells through a process called epithelial-to-mesenchymal transition (EMT). Throughout different steps of metastasis, escaped epithelial clusters encounter heterogeneous tissues of varying mechanical properties that ultimately influence their behavior in distant locations within the body. This dissertation investigates the mechanobiology of epithelial clusters …


An Array Of Circular Dielectrophoresis Traps To Separate And Charaterize Individual Microparticles From Population, Hwangjae Lee Aug 2017

An Array Of Circular Dielectrophoresis Traps To Separate And Charaterize Individual Microparticles From Population, Hwangjae Lee

Theses and Dissertations

Dielectrophoretic traps have been broadly studied in light of their many advantages of high controllability, ease of operation, and high efficiency. In the previous studies, however, it was challenging to count captured particles or required work to capture particles. In the thesis, an array of circular dielectrophoresis (DEP) traps was developed and tested to manipulate population of microparticles in single particle level. The circular DEP traps enable more precise control of the force field than conventionally used interdigitated electrodes due to its omnidirectional and symmetric properties. The location of the captured microparticle inside the trap was confirmed by both of …


Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris Aug 2017

Optimization Of Prosthetic Hands: Utilizing Modularity To Improve Grip Force, Grasp, And Versatility, Jordan William Harris

UNLV Theses, Dissertations, Professional Papers, and Capstones

It has been demonstrated that although many varieties of upper limb prosthetics exist, commercially available prosthetics are outdated and unsatisfactory. Ineffectiveness and limitations have led to some prosthesis wearers having to own multiple devices, whereas others have given up on them entirely. Even though ample research has been conducted to design and test new hand designs, the industry appears to rest in an overall stagnated state.

It was proposed here, that one problem with prosthetic research is an excess of variables involved in testing, and therefore the improper application of the scientific method. It seems that each time a research …


A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber Jul 2017

A Magnetic Resonance Compatible Knee Extension Ergometer, Youssef Jaber

Masters Theses

The product of this thesis aims to enable the study of the biochemical and physical dynamics of the lower limbs at high levels of muscle tension and fast contraction speeds. This is accomplished in part by a magnetic resonance (MR) compatible ergometer designed to apply a load as a torque of up to 420 Nm acting against knee extension at speeds as high as 4.7 rad/s. The system can also be adapted to apply the load as a force of up to 1200 N acting against full leg extension. The ergometer is designed to enable the use of magnetic resonance …


The Development Of A Platform Interface With The Use Of Virtual Reality To Enhance Upper-Extremity Prosthetic Training And Rehabilitation, Ashley D. Knight Jun 2017

The Development Of A Platform Interface With The Use Of Virtual Reality To Enhance Upper-Extremity Prosthetic Training And Rehabilitation, Ashley D. Knight

USF Tampa Graduate Theses and Dissertations

This dissertation focuses on the investigation and development of an effective prosthetic training and rehabilitation platform with the use of virtual reality to facilitate an effective process to return amputees to the highest level of independence and functioning possible.

It has been reported that approximately 10 million people live with a limb loss worldwide, with around 30% being an upper-extremity amputee. The sudden loss of a hand or arm causes the loss of fine, coordinated movements, reduced joint range of motion (ROM), proprioceptive feedback and aesthetic appearance, all which can be improved with the use of a prosthesis and proper …


Human Biomechanics Ii Course Project, Abdelaziz Mohammad Jun 2017

Human Biomechanics Ii Course Project, Abdelaziz Mohammad

Best Integrated Writing

Mohammad tested Human Arm Module PASCO ME-6807A, in order to determine some of the biomechanical characteristics, such as force, tension, instantaneous angular velocity, and acceleration vs. angular position required for various movements and arm positions in space.


Vrshape: A Virtual Reality Tool For Shaping Movement Compensation, Matthew Hale Foreman May 2017

Vrshape: A Virtual Reality Tool For Shaping Movement Compensation, Matthew Hale Foreman

Arts & Sciences Electronic Theses and Dissertations

The majority of persons living with chronic stroke experience some form of upper extremity motor impairment that affects their functional movement, performance of meaningful activities, and participation in the flow of daily life. Stroke survivors often compensate for these impairments by adapting their movement patterns to incorporate additional degrees of freedom at new joints and body segments. One of the most common compensatory movements is the recruitment of excessive trunk flexion when reaching with the affected upper extremity. Long-term use of these compensations may lead to suboptimal motor recovery and chronic pain or injury due to overuse. Rehabilitation focuses on …


Quantifying Static And Dynamic Stability Using Mobile Sensors, Mason Schleu Mar 2017

Quantifying Static And Dynamic Stability Using Mobile Sensors, Mason Schleu

UNO Student Research and Creative Activity Fair

Balance disorders impact millions of people causing substantial impact on quality of life due to psychological and physical hardships associated with poor balance. However, a clinically relevant, low cost, self-service system in detecting such disorders does not exist. Previous research has shown the built in accelerometer and gyroscope sensors of a smart phone to be valid tools in detecting standing balance performance using traditional linear analysis, however, such a system has yet to be proven useful in detecting dynamic postural variability. Indeed, more quantitative methods than are typically used in clinical settings are necessary for early detection of poor postural …


An Investigation Of The Mechanism Of Traumatic Brain Injury Caused By Blast In The Open Field, Ke Feng Jan 2017

An Investigation Of The Mechanism Of Traumatic Brain Injury Caused By Blast In The Open Field, Ke Feng

Wayne State University Dissertations

Blast-induced traumatic brain injury (bTBI) is a signature wound of modern warfare. The current incomplete understanding of its injury mechanism impedes the development of strategies for effective protection of bTBI. Despite a considerable amount of experimental animal studies focused on the evaluation of brain neurotrauma caused by blast exposure, there is very limited knowledge on the biomechanical responses of the gyrenecephalic brain subjected to primary free-field blast waves imposed in vivo, and the correlation analysis between the biomechanical responses and its injury outcomes. Such information is crucial to the development of injury criteria of bTBI.

This study aims to evaluate …


Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke Jan 2017

Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke

Wayne State University Dissertations

Linear and angular velocity and acceleration of the head are typically correlated to concussion. Despite improvements in helmet performance to reduce accelerations, a corresponding reduction in the incidence of concussion has not occurred (National Football League [NFL] 1996 – present).

There is compelling research that forces on and deformation to the brain stem are related to concussion. The brain stem is the center of control for respiration, blood pressure and heart rate and is the root of most cranial nerves. Injury to the brain stem is consistent with most symptoms of concussion reported in the National Football League and the …


Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen Jan 2017

Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen

Wayne State University Dissertations

Finite element (FE) model is a useful tool frequently used for investigating the injury mechanisms and designing protection countermeasures. At present, no 10 years old (YO) pedestrian FE model has been developed from appropriate anthropometries and validated against limitedly available impact response data. A 10 YO child FE pelvis and lower extremities (PLEX) model was established to fill the gap of lacking such models in this age group. The baseline model was validated against available pediatric postmortem human subjects (PMHS) test data and additional scaled adult data, then the PLEX model was integrated to build a whole-body FE model representing …


Beneficial Aerodynamic Effect Of Wing Scales On The Climbing Flight Of Butterflies, Nathan Slegers, Michael Heilman, Jacob Cranford, Amy Lang, John Yoder, Maria Laura Habegger Jan 2017

Beneficial Aerodynamic Effect Of Wing Scales On The Climbing Flight Of Butterflies, Nathan Slegers, Michael Heilman, Jacob Cranford, Amy Lang, John Yoder, Maria Laura Habegger

Faculty Publications - Biomedical, Mechanical, and Civil Engineering

It is hypothesized that butterfly wing scale geometry and surface patterning may function to improve aerodynamic efficiency. In order to investigate this hypothesis, a method to measure butterfly flapping kinematics optically over long uninhibited flapping sequences was developed. Statistical results for the climbing flight flapping kinematics of 11 butterflies, based on a total of 236 individual flights, both with and without their wing scales, are presented. Results show, that for each of the 11 butterflies, the mean climbing efficiency decreased after scales were removed. Data was reduced to a single set of differences of climbing efficiency using are paired t …


Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari Jan 2017

Comparison Of Lumbo-Pelvic Kinematics During Trunk Forward Bending And Backward Return Between Patients With Acute Low Back Pain And Asymptomatic Controls, Iman Shojaei, Elizabeth G. Salt, Quenten L. Hooker, Linda R. Van Dillen, Babak Bazrgari

Biomedical Engineering Faculty Publications

Background—Prior studies have reported differences in lumbo-pelvic kinematics during a trunk forward bending and backward return task between individuals with and without chronic low back pain; yet, the literature on lumbo-pelvic kinematics of patients with acute low back pain is scant. Therefore, the purpose of this study was set to investigate lumbo-pelvic kinematics in this cohort.

Methods—A case-control study was conducted to investigate the differences in pelvic and thoracic rotation along with lumbar flexion as well as their first and second time derivatives between females with and without acute low back pain. Participants in each group completed one …