Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Molecular Genetics

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Using Fluorescent Microscopy To Follow Mitochondrial Inheritance Through Tagged Alternative Oxidase In Sporisorium Reilianum., Luke Schroeder May 2022

Using Fluorescent Microscopy To Follow Mitochondrial Inheritance Through Tagged Alternative Oxidase In Sporisorium Reilianum., Luke Schroeder

College of Arts & Sciences Senior Honors Theses

Sporisorium reilianum is a dimorphic fungus that inhabits and infects a host corn plant (Zea mays). In order for the fungus to reproduce sexually, compatible haploid mating types must form a dikaryon that goes on to cause infection in the host. This infection causes leaf chlorosis and gall formation, while ultimately allowing for the dispersal of fungal teliospores in the later stages of infection. To grow, the fungus requires energy production in the form of ATP from its mitochondria. As a countermeasure to infection, host plants release harsh reactive oxygen species that may damage DNA, lead to apoptosis, …


Investigation Of Mitochondrial Inheritance In The Smut Fungus Sporisorium Reilianum., Hector Eduardo Mendoza Dec 2021

Investigation Of Mitochondrial Inheritance In The Smut Fungus Sporisorium Reilianum., Hector Eduardo Mendoza

Electronic Theses and Dissertations

An important goal in evolutionary biology is to address the origin of Earth’s immense biodiversity through the evolution of complex sexual reproduction mechanisms in eukaryotes. Inheritance of mitochondria during sexual reproduction has received special attention in recent years, as these organelles cannot be synthesized de novo and must be transmitted from parent to offspring. The importance of these organelles far exceeds its common function as the energy-producing “powerhouse” of the cell, as it has been found to also be involved in fundamental processes like apoptosis, aging and metabolic homeostasis. Thus, appropriate inheritance of mitochondria is essential for growth and development …


Transactivation And Mitochondrial Activity Are Affected By High Temperature In C. Elegans Sperm, Jacqueline Mcvay Jan 2021

Transactivation And Mitochondrial Activity Are Affected By High Temperature In C. Elegans Sperm, Jacqueline Mcvay

Scripps Senior Theses

Sexual reproduction has a conserved flaw in that it is temperature sensitive. Exposure to high temperature leads to male infertility, but little is known about the underlying mechanism. Understanding these mechanisms is important for agriculture and reproductive medicine. Using C. elegans, we investigated two potential aspects of male fertility that may be affected by high temperature conditions: activation of sperm by seminal fluid and sperm mitochondrial activity. There are two pathways for sperm activation in C. elegans: the SPE-8 pathway in hermaphrodites and the TRY-5 pathway in male seminal fluid. Hermaphrodite sperm with a mutation in spe-8 can …


A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman May 2019

A Dedicated Chaperone Mediates The Safe Transfer Of Mitoribosomal Proteins To Their Site Of Assembly, Gabrielle Ashley Hillman

Graduate School of Biomedical Sciences Theses and Dissertations

Mitochondrial ribosomes are functionally specialized for the synthesis of several essential inner membrane proteins of the respiratory chain. While remarkable progress has recently been made towards understanding the structure of mitoribosomes, the unique pathways and factors that facilitate their biogenesis remain largely unknown. This dissertation defines the physiological role of an evolutionarily conserved yeast protein called Mam33 in mitochondrial ribosome assembly. The biomedical relevance of this finding stems from the fact that mutations or changes in its expression of the human ortholog p32 result in mitochondrial dysfunction. In human patients, bi-allelic mutations cause severe multisystemic defects in mitochondrial energy metabolism, …


Effects Of Commercial Formulations Of Glyphosate On Saccharomyces Cerevisiae, Apoorva Ravi Shankar Jan 2019

Effects Of Commercial Formulations Of Glyphosate On Saccharomyces Cerevisiae, Apoorva Ravi Shankar

Graduate Theses, Dissertations, and Problem Reports

Commercial formulations of glyphosate are among the most extensively used herbicides around the world. The active ingredient, glyphosate, targets the aromatic amino acid pathway. This pathway is absent in mammals, resulting in low toxicity. Different formulations contain varying adjuvants and surfactants, whose synergistic effects are yet to be extensively studied at the cellular level. In this study, I tested multiple commercial formulations that showed a variation in growth phenotype among different yeast strains. To gain a better understanding of response and resistance mechanisms at the genome and transcriptome level, I carried out an in-lab evolution study, along with a transcriptome …


Expression Of Alternative Oxidase In The Copepod T. Californicus When Exposed To Environmental Stressors, Carly Tward Jan 2019

Expression Of Alternative Oxidase In The Copepod T. Californicus When Exposed To Environmental Stressors, Carly Tward

Theses and Dissertations (Comprehensive)

In addition to the typical electron transport system in animal mitochondria responsible for oxidative phosphorylation, some species possess an alternative oxidase (AOX) pathway, which causes electrons to bypass proton pumping complexes. Although AOX appears to be energetically wasteful, studies have revealed its wide taxonomic distribution, and indicate it plays a role in environmental stress tolerance. AOX discovery in animals is recent, and further research into its expression, regulation, and physiological role has been impeded by the lack of an experimental model organism. DNA database searches using bioinformatics revealed an AOX sequence present in the arthropod Tigriopus californicus. Multiple sequence …


Assisted Reproductive Technologies Disrupt Genomic Imprinting In Human And Mitochondria In Mouse Embryos, Carlee R. White Aug 2016

Assisted Reproductive Technologies Disrupt Genomic Imprinting In Human And Mitochondria In Mouse Embryos, Carlee R. White

Electronic Thesis and Dissertation Repository

Infertile couples worldwide use assisted reproductive technologies (ARTs) to help conceive their own biological child. Due to the rising use of ARTs, there is continual emergence of new techniques implemented in human fertility clinics. When treatment is successful, there is an increased risk even within singletons for perinatal complications including preterm birth, intrauterine growth restriction, low and high birth weight and genomic imprinting disorders Beckwith Wiedemann Syndrome, Angelman Syndrome, and Silver-Russel Syndrome. Consequently, there is a need to investigate the effects of these treatments on the manipulated oocyte and preimplantation embryo. To address this, I first analyzed the combined effects …


Functional Significance Of Mtdna Cytosine Modification Tested By Genome Editing, Jason M. Robinson Jan 2016

Functional Significance Of Mtdna Cytosine Modification Tested By Genome Editing, Jason M. Robinson

Theses and Dissertations

The field of epigenetics is gaining popularity and speed, due in part to its capability to answer lingering questions about the root cause of certain diseases. Epigenetics plays a crucial role in regulation of the cell and cell survival, particularly by cytosine methylation. It remains controversial if DNMT’s which facilitate methylation are present in mammalian mitochondria and what the functional significance they may have on modification of mitochondrial DNA. CRISPR-Cas9 technology enabled genome editing to remove the MTS (mitochondrial targeting sequence) from DNMT1 of HCT116 cells, purposefully minimizing effects on nuclear cytosine methylation, while exclusively impacting mitochondrial modification. Removal of …