Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

Kennesaw State University

Developmental Biology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Molecular Genetics

Spr-5; Met-2 Maternal Reprogramming Cooperates With The Dream Complex To Regulate Developmental Cell Fates, Jazmin Dozier, Sandra Nguyen, Brandon Carpenter Apr 2022

Spr-5; Met-2 Maternal Reprogramming Cooperates With The Dream Complex To Regulate Developmental Cell Fates, Jazmin Dozier, Sandra Nguyen, Brandon Carpenter

Symposium of Student Scholars

Histone methylation is a post-transcriptional modification to the N-terminal tails of histone core proteins that regulates DNA accessibility, and consequently, gene expression. Like DNA, histone methylation can be inherited between generations, and is highly regulated during embryonic development. At fertilization, histone methylation must undergo maternal reprogramming to reset the epigenetic landscape in the new zygote. During maternal reprogramming of histone methylation in the nematode, C. elegans, H3K4me (a modification associated with active transcription) is removed by the H3K4 demethylase, SPR-5, and H3K9me (a modification associated with transcriptional repression) is subsequently added by the histone methyltransferase, MET-2. Recently, it was …


Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro May 2021

Creating A Protein Chimera To Study Regulation Of Muscle Diversity, Shannon Scarboro

Symposium of Student Scholars

Creating a protein chimera to study regulation of muscle diversity.

Body muscles are made of many individual super-cells, called muscle fibers, that have distinct properties and determine every individual’s strength and endurance. Initially all muscle fibers have identical characteristics, but become differentiated into specific types in adults. The mechanism of such transition is not well understood, despite its obvious importance for shaping human physicality.

Remarkable conservation of the muscle tissue enables us to use fruit flies to study the mechanisms of muscle fiber diversity. We hypothesized that the transcription factor Mef2 acts as a molecular switch that activates structural genes …