Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Molecular Genetics

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde Mar 2022

Salicylic Acid And N-Hydroxypipecolic Acid At The Fulcrum Of The Plant Immunity-Growth Equilibrium, Alyssa Shields, Vanessa Shivnauth, Christian Danve M. Castroverde

Biology Faculty Publications

Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals involved in both resistance at local sites of pathogen infection (basal resistance) and at distal uninfected sites after primary infection (systemic acquired resistance). Major discoveries and advances have led to deeper understanding of their biosynthesis and signaling during plant defense responses. In addition to their well-defined roles in immunity, recent research is emerging on their direct mechanistic impacts on plant growth and development. In this review, we will first provide an overview of how SA and NHP regulate local and systemic immune responses in plants. We …


Mechanistic Insights Into Strigolactone Biosynthesis, Signaling And Regulation During Plant Growth And Development, Kaiser Iqbal Wani, Andleeb Zehra, Sadaf Choudhary, M Naeem, M. Masroor A. Khan, Christian Danve Castroverde, Tariq Aftab Oct 2020

Mechanistic Insights Into Strigolactone Biosynthesis, Signaling And Regulation During Plant Growth And Development, Kaiser Iqbal Wani, Andleeb Zehra, Sadaf Choudhary, M Naeem, M. Masroor A. Khan, Christian Danve Castroverde, Tariq Aftab

Biology Faculty Publications

Strigolactones (SLs) constitute a group of carotenoid-derived phytohormones with butenolide moieties. These hormones are involved in various functions, including regulation of secondary growth, shoot branching and hypocotyl elongation, and stimulation of seed germination. SLs also control hyphal branching of arbuscular mycorrhizal (AM) fungi, and mediate responses to both abiotic and biotic cues. Most of these functions stem from the interplay of SLs with other hormones, enabling plants to appropriately respond to changing environmental conditions. This dynamic interplay provides opportunities for phytohormones to modulate and augment one another. In this article, we review our current mechanistic understanding of SL biosynthesis, receptors …