Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Molecular Genetics

Gene Expression Changes Linked To Phenylpropanoid-Based Resistance To Fusarium Head Blight Of Wheat, Shiv Singla May 2023

Gene Expression Changes Linked To Phenylpropanoid-Based Resistance To Fusarium Head Blight Of Wheat, Shiv Singla

Department of Plant Pathology: Dissertations, Theses, and Student Research

Fusarium graminearum is a devastating pathogen of wheat that causes Fusarium head blight (FHB) and contaminates the grain with the mycotoxin deoxynivalenol (DON). Resistance to FHB is quantitative and it is important to identify additional genes conferring resistance against it. The goal of this thesis was to examine if the constitutive expression of two sorghum phenylpropanoid pathway genes, SbCCoAOMT (encoding caffeoyl-CoA O-methyltransferase) and SbC3’H (encoding p-coumarate 3-hydroxylase), in the moderately-susceptible spring wheat CB037 can provide Type-I and Type-II resistance to F. graminearum and determine the underlying mechanisms of the enhanced resistance. The constitutive expression lines (CCoAOMT413, CCoAOMT421, C3H112, …


Deciphering The Genetic Architecture Of Key Female Floral Traits For Hybrid Wheat Seed Production, Juan Jimenez Dec 2022

Deciphering The Genetic Architecture Of Key Female Floral Traits For Hybrid Wheat Seed Production, Juan Jimenez

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Wheat (Triticum aestivum L.) is a staple cereal that provides 20% of the calories and proteins in human intake (Ray et al., 2013). Global population is projected to increase to 9.7 billion by 2050. Food production must increase by 70% to feed this future population. Wheat production is in crisis due to political and environmental challenges and is projected to decline by 0.8% in 2022 (FAO, 2022). To ensure food security yield genetic gain must increase by around 1.4% annually. Taking advantage of heterosis, hybrid wheat has the potential to boost grain yield. However, hybrid wheat seed production systems …


Production, Evaluation, And Selection Of Elite Quality Protein Popcorn (Qpp) Hybrids, Leandra Parsons May 2021

Production, Evaluation, And Selection Of Elite Quality Protein Popcorn (Qpp) Hybrids, Leandra Parsons

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

In 2017, twelve Quality Protein Popcorn (QPP) inbred lines were developed and selected as premier dent by popcorn crosses fit for hybridization and testing. These QPP inbred lines were derived from specific Quality Protein dent Maize (QPM) by ConAgra Brands® popcorn line crosses to produce high lysine, vitreous popcorn lines capable of near-equal popping characteristics compared to the original popcorn parents. The QPP hybridization project commenced in the summer of 2018 utilizing these 12 inbred QPP lines and crossing them in a full diallel. Since then, the production of QPP hybrids has employed a diverse set of selection factors evaluating …


Characterization Of A Novel Mitochondrial Plasmid In Brassica, Mackenzie Strehle Oct 2017

Characterization Of A Novel Mitochondrial Plasmid In Brassica, Mackenzie Strehle

UCARE Research Products

Possessing some of the largest and most complex genomes of any eukaryotic organelles, plant mitochondria are notorious for their rapidly rearranging genetic framework. In addition to containing a large and complex mitochondrial genome, the mitochondria of several plants in the genus Brassica have also been shown to contain an independent, self-replicating linear plasmid. Interestingly, the plasmid appears to be able to move independently between the cytoplasm and the mitochondria, and it can be paternally inherited, unlike the rest of the mitochondrial genome. The plasmid also has features similar to those of adenoviruses, including terminal inverted repeats and covalently bound proteins …


Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson Jul 2016

Comparative Genomics, Transcriptomics, And Physiology Distinguish Symbiotic From Free-Living Chlorella Strains, Cristian F. Quispe, Olivia Sonderman, Maya Khasin, Wayne R. Riekhof, James L. Van Etten, Kenneth Nickerson

Kenneth Nickerson Papers

Most animal–microbe symbiotic interactions must be advantageous to the host and provide nutritional benefits to the endosymbiont. When the host provides nutrients, it can gain the capacity to control the interaction, promote self-growth, and increase its fitness. Chlorella-like green algae engage in symbiotic relationships with certain protozoans, a partnership that significantly impacts the physiology of both organisms. Consequently, it is often challenging to grow axenic Chlorella cultures after isolation from the host because they are nutrient fastidious and often susceptible to virus infection. We hypothesize that the establishment of a symbiotic relationship resulted in natural selection for nutritional and metabolic …


Distribution Of Genomic Variation In The Usda Soybean Germplasm Collection And Relationship With Phenotypic Variation, Nonoy Batiller Bandillo Jul 2016

Distribution Of Genomic Variation In The Usda Soybean Germplasm Collection And Relationship With Phenotypic Variation, Nonoy Batiller Bandillo

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

The USDA Soybean Germplasm Collection harbors a large stock of genetic diversity with potential to accelerate soybean cultivar development. The extent and nature of favorable alleles contained in the collection are not well known nor is the distribution of genetic variation and how it relates to phenotypic variation. The genotyping of the entire USDA Soybean Germplasm Collection marked the beginning of a systematic exploration of genetic diversity for genetic research and breeding. In this research, we conducted the first comprehensive analysis of population structure on the collection of ~14,400 soybean accessions [Glycine max (L.) Merr. and G. soja Siebold …


Is A Mitochondrial Plasmid Really A Virus?, Mackenzie Strehle Apr 2016

Is A Mitochondrial Plasmid Really A Virus?, Mackenzie Strehle

UCARE Research Products

In addition to containing a large and complex mitochondrial genome, the mitochondria of several species of plants have been shown to contain an independent, self-replicating DNA molecule in the form of a plasmid. Plants in the Brassica genus contain a linear plasmid that is approximately 11.6 kilobases in length. The plasmid is characterized by the presence of terminal inverted repeats and covalently bonded proteins at its termini (Handa 2008). The plasmid also contains six ORFs that encode DNA and RNA polymerases and a number of unknown proteins (Figure 1). Currently, both the function of this plasmid and the mechanisms by …


Functional Genomics Of Maize Endosperm Maturation And Protein Quality, Lingling Yuan Jul 2014

Functional Genomics Of Maize Endosperm Maturation And Protein Quality, Lingling Yuan

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

Maize is one of the most important cereal crops and widely cultivated throughout the world. The study on maize kernel development including protein quality improvement is essential for removing dietary protein deficiency because of the lack of essential amino acids, especially lysine and tryptophan, in maize kernel. Quality Protein Maize (QPM) is a hard kernel variant of the high-lysine mutant, opaque-2. We created opaque QPM variants to identify opaque-2 modifier genes and to investigate deletion mutagenesis combined with Illumina sequencing as a maize functional genomics tool. A K0326Y-QPM deletion mutant, line 107, was null for the 27- and 50-kD …


Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe Aug 2011

Gata-Family Transcription Factors In Magnaporthe Oryzae, Cristian F. Quispe

Department of Agronomy and Horticulture: Dissertations, Theses, and Student Research

The filamentous fungus, Magnaporthe oryzae, responsible for blast rice disease, destroys around 10-30% of the rice crop annually. Infection begins when the specialized infection structure, the appressorium, generates enormous internal turgor pressure through the accumulation of glycerol. This turgor acts on a penetration peg emerging at the base of the cell, causing it to breach the leaf surface allowing its infection.

The enzyme trehalose-6- phosphate synthase (Tps1) is a central regulator of the transition from appressorium development to infectious hyphal growth. In the first chapter we show that initiation of rice blast disease requires a regulatory mechanism involving an …