Open Access. Powered by Scholars. Published by Universities.®

Molecular Genetics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Molecular Genetics

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo Aug 2022

Dual Mechanisms Implemented By Lin-28 For Positive Regulation Of Hbl-1 Are Necessary For Proper Development Of Distinct Tissues In Caenorhabditis Elegans, Madeleine Minutillo

Graduate School of Biomedical Sciences Theses and Dissertations

In Caenorhabditis elegans, the heterochronic pathway is comprised of a hierarchy of genes that control the proper timing of developmental events. hbl-1 (Hunchback Like-1) encodes an Ikaros family zinc-finger transcription factor that promotes the L2 stage cell fate events of the hypodermis. The downregulation ofhbl-1 is a crucial step for the transition from the L2 to the L3 stage. There are two known processes through which negative regulation of hbl-1 occurs: suppression of hbl-1 expression by 3 let-7 miRNAs through the hbl-1 3’UTR and inhibition of HBL-1 activity by LIN-46. The mechanisms by which hbl-1 is positively regulated have not …


Evolutionary Conservation Of The Heterochronic Pathway In C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss May 2021

Evolutionary Conservation Of The Heterochronic Pathway In C. Elegans And C. Briggsae, Maria Ivanova, Eric G. Moss

Rowan-Virtua Research Day

Heterochronic genes control the sequence and timing of developmental events during four larval stages of Caenorhabitis nematodes. Mutations in these genes may cause skipping or reiteration of developmental events.

C. briggsae is a close relative of C. elegans. These species have similar morphology and share the same ecological niche. C. briggsae undergoes the same developmental pathway consisting of four larval stages before reaching adulthood. It also has the same set of heterochronic genes.

Lin-28 is one of the heterochronic genes that also exists in other animals from flies to humans. It conservatively blocks the maturation of let-7 miRNA, the process …


Loss Of Function Of Gene X Protects Against Α-Dicarbonyl Stress Through The Skn-1 Pathway In C. Elegans, Austin Lim Jun 2018

Loss Of Function Of Gene X Protects Against Α-Dicarbonyl Stress Through The Skn-1 Pathway In C. Elegans, Austin Lim

Dissertations, Masters Theses, Capstones, and Culminating Projects

Diabetes mellitus and Parkinson’s Disease (PD) are debilitating diseases that are increasing in prevalence worldwide. One potential cause of these diseases is the accumulation of advanced glycation end products (AGEs), which are macromolecules that cause irreversible damages. AGEs are a diverse group of highly oxidative byproducts produced from α-dicarbonyl compounds (α-dcs), which are highly reactive molecules that bind indiscriminately to protein and DNA and, are regulated by a conserved glyoxalase system (GLO1 and DJ-1) in humans. Utilizing the conserved glyoxalase system, we were able to establish within a C. elegans model that when this glyoxalase system is impaired, …


Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams Oct 2015

Reactive Oxygen Species-Mediated Neurodegeneration Is Independent Of The Ryanodine Receptor In Caenorhabditis Elegans, Lyndsay E.A. Young, Daniel C. Williams

Journal of the South Carolina Academy of Science

Despite the significant impacts on human health caused by neurodegeneration, our understanding of the degeneration process is incomplete. The nematode Caenorhabditis elegans is emerging as a genetic model organism well suited for identification of conserved cellular mechanisms and molecular pathways of neurodegeneration. Studies in the worm have identified factors that contribute to neurodegeneration, including excitotoxicity and stress due to reactive oxygen species (ROS). Disruption of the gene unc-68, which encodes the ryanodine receptor, abolishes excitotoxic cell death, indicating a role for calcium (Ca2+) signaling in neurodegeneration. We tested the requirement for unc-68 in ROS-mediated neurodegeneration using the …