Open Access. Powered by Scholars. Published by Universities.®

Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Genomics

What I Talk About When I Talk About Integration Of Single-Cell Data, Yang Xu Aug 2022

What I Talk About When I Talk About Integration Of Single-Cell Data, Yang Xu

Doctoral Dissertations

Over the past decade, single-cell technologies evolved from profiling hundreds of cells to millions of cells, and emerged from a single modality of data to cover multiple views at single-cell resolution, including genome, epigenome, transcriptome, and so on. With advance of these single-cell technologies, the booming of multimodal single-cell data creates a valuable resource for us to understand cellular heterogeneity and molecular mechanism at a comprehensive level. However, the large-scale multimodal single-cell data also presents a huge computational challenge for insightful integrative analysis. Here, I will lay out problems in data integration that single-cell research community is interested in and …


Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter Jun 2022

Characterizing Endogenous Dicer Products To Unravel Novel Rnai Biogenesis Pathways, Jacob Oche Peter

Dissertations

ABSTRACT

RNA interference (RNAi) is a pervasive gene regulatory mechanism in eukaryotes based on the action of multiple classes of small RNA (sRNA). Exploiting RNAi pathways in non-model systems have great potential for creating potent RNAi technologies. Here, we accessed RNAi-mediated control of gene expression in the two-spotted spider mite, Tetranychus urticae (T. urticae) using engineered dsRNA designed to modulate the host RNAi pathway and increase RNAi efficacy. Analysis of Dicer (Dcr) generated fragments revealed how exogenous RNAs access the host RNAi pathway in this animal, opening avenues for designing RNAi technology for their control. Further, some organisms …


Unraveling The Genetic Architecture Of Somatic Embryogenesis In Upland Cotton, Adam M. Canal May 2022

Unraveling The Genetic Architecture Of Somatic Embryogenesis In Upland Cotton, Adam M. Canal

All Theses

Somatic embryogenesis is the de novo development of asexual embryos because of the plasticity of the plant cell. In tissue culture, the biochemical and genetic mechanisms of dedifferentiated callus tissues can be reprogrammed to transdifferentiate into developed, polarized embryos, which can ultimately regenerate into whole plants. Although this rarely occurs in nature, scientists have exploited this process for decades to regenerate whole plants following gene transformation or for micropropagation. While some species are amenable to in vitro regeneration, upland cotton is particularly recalcitrant, with regenerative potential being confined to only several genotypes. The lack of elite, regenerable genotypes greatly restricts …


Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez May 2022

Functional Role Of Ppal And Potential For Moss In Industrial Applications., Susana Perez Martinez

Electronic Theses and Dissertations

This dissertation is an examination and characterization of the functional roles of PPAL. PROTEIN PRENYLTRANSFERASE ALPHA SUBUNIT-LIKE (PPAL) is a recently discovered gene. PPAL homologs are present in all plants and many animals, where its function is largely unknown. It is possible that PPAL could participate in prenylation processes since it shares similarity to the α subunits of known prenylation enzymes. Prenylation is a post-translational modification of proteins that involves the addition of a lipid moiety to proteins to facilitate membrane targeting and association and promote protein-protein interactions. Prenylation has important roles in plant growth and development, including …


Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao Feb 2022

Mapping Selected Polyphenols Metabolism By Gut Bacteria And Their Genes, Ermin Zhao

Doctoral Dissertations

The human gut microbiome is a huge enzyme repository for dietary polyphenols metabolism, especially considering most of the polyphenols cannot be digested in the host and their biological functions are limited. Poor bioaccessibility based on traditional pharmaceutical ADME (absorption, distribution, metabolism, and excretion) assessment is the main problem facing the widely medical application of most polyphenols. Gut bacteria have the potential to mediate a wide range of biotransformation reactions of polyphenols, which leads to the production of many bioactive metabolites. In the past decades, mounting evidence in traditional ADME study have demonstrated gut bacteria play an irreplaceable role in dietary …


Cpf1-Based Crispr Genome Editing In The Cyanobacterium N. Punctiforme, Soohan Woo Jan 2022

Cpf1-Based Crispr Genome Editing In The Cyanobacterium N. Punctiforme, Soohan Woo

University of the Pacific Theses and Dissertations

CRISPR systems have been growing in their utility and their application throughout the biological field as researchers continue to grow in their understanding of the relatively novel genome editing technology. However, despite the potential of CRISPR as a genome editing tool, the complexity of applying this technology to a specific organism calls for custom modifications to the system to improve its success rate. In this project, a CRISPR-Cpf1 system that can be effectively employed in the cyanobacterium Nostoc punctiforme was designed, with a focus on the hormogonium development of this species. Multiple plasmids containing the CRISPR system and targeting different …