Open Access. Powered by Scholars. Published by Universities.®

Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genomics

Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of Pseudomonas Aeruginosa, Dustin Esmond Sep 2021

Assesment Of Antibiotic Resistant Gene Expression In Clinical Isolates Of Pseudomonas Aeruginosa, Dustin Esmond

Biology Theses

Increasing prevalence of nosocomial infections by antimicrobial resistant pathogens resulting in higher mortality rates and financial burden is of great concern. Pseudomonas aeruginosa represents one of six highly virulent “ESKAPE” pathogens that exhibit considerable intrinsic drug resistance as well as mechanisms for acquiring further resistance. As many of these mechanisms are regulated through gene expression, we sought to identify regulatory strategies and patterns at play in 23 clinical isolates collected from Baku, Azerbaijan and Tyler, Texas, USA. Real-time quantitative polymerase chain reaction was performed on six gene targets implicated in resistance and contrasted with antibiotic phenotypes. We found AmpC cephalosporinase …


Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker Aug 2021

Gene Expression Profiling Of Mapk Pathway Inhibitor Resistance In Cutaneous Melanoma: Can Bioinformatics Be Used To Select Better Melanoma Cell Lines?, Stephen Luebker

Theses & Dissertations

Melanoma is the deadliest form of skin cancer, and incidence has continued to increase. Half of all melanomas have a BRAF V600E mutation and respond to MAPK pathway inhibitors, including BRAF inhibitor therapy or BRAF/MEK inhibitor combination therapy, but nearly all patients develop treatment resistance. Melanoma cell lines produce variable results as models of MAPK pathway inhibitor resistance. To better understand how the genomic similarity of a melanoma cell line to patient-derived tumors affects resistance mechanisms, differences in DNA mutations and copy-number alterations were compared between melanoma cell lines profiled by the Cancer Cell Line Encyclopedia and cutaneous melanoma tumors …


The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan May 2021

The Effects Of Mapk Signaling On The Development Of Cerebellar Granule Cells, Kerry Morgan

Honors Scholar Theses

The granule cells are the most abundant neuronal type in the human brain. Rapid proliferation of granule cell progenitors results in dramatic expansion and folding of the cerebellar cortex during postnatal development. Mis-regulation of this proliferation process causes medulloblastoma, the most prevalent childhood brain tumor. In the developing cerebellum, granule cells are derived from Atoh1-expressing cells, which arise from the upper rhombic lip (the interface between the roof plate and neuroepithelium). In addition to granule cells, the Atoh1 lineage also gives rise to different types of neurons including cerebellar nuclei neurons. In the current study, I have investigated the …


The Giant Axolotl Genome Uncovers The Evolution, Scaling, And Transcriptional Control Of Complex Gene Loci, Siegfried Schloissnig, Akane Kawaguchi, Sergej Nowoshilow, Francisco Falcon, Leo Otsuki, Pietro Tardivo, Nataliya Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith, S. Randal Voss, Elly M. Tanaka Apr 2021

The Giant Axolotl Genome Uncovers The Evolution, Scaling, And Transcriptional Control Of Complex Gene Loci, Siegfried Schloissnig, Akane Kawaguchi, Sergej Nowoshilow, Francisco Falcon, Leo Otsuki, Pietro Tardivo, Nataliya Timoshevskaya, Melissa C. Keinath, Jeramiah J. Smith, S. Randal Voss, Elly M. Tanaka

Biology Faculty Publications

Vertebrates harbor recognizably orthologous gene complements but vary 100-fold in genome size. How chromosomal organization scales with genome expansion is unclear, and how acute changes in gene regulation, as during axolotl limb regeneration, occur in the context of a vast genome has remained a riddle. Here, we describe the chromosome-scale assembly of the giant, 32 Gb axolotl genome. Hi-C contact data revealed the scaling properties of interphase and mitotic chromosome organization. Analysis of the assembly yielded understanding of the evolution of large, syntenic multigene clusters, including the Major Histocompatibility Complex (MHC) and the functional regulatory landscape of the Fibroblast Growth …