Open Access. Powered by Scholars. Published by Universities.®

Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Developmental Biology

Theses/Dissertations

Institution
Keyword
Publication Year
Publication

Articles 1 - 16 of 16

Full-Text Articles in Genomics

Functional Analyses Of The Polycomb-Group Genes In Sea Lamprey Embryos Undergoing Programmed Dna Loss, Cody Saraceno Jan 2024

Functional Analyses Of The Polycomb-Group Genes In Sea Lamprey Embryos Undergoing Programmed Dna Loss, Cody Saraceno

Theses and Dissertations--Biology

During early embryonic development, the sea lamprey (Petromyzon marinus) undergoes programmatic elimination of DNA from somatic progenitor cells in a process termed programmed genome rearrangement (PGR). Eliminated DNA eventually becomes condensed into micronuclei, which are then physically degraded and permanently lost from the cell. Previous studies indicated that many of the genes eliminated during PGR have mammalian homologs that are bound by polycomb repressive complex (PRC) in embryonic stem cells. To test whether PRC components play a role in the faithful elimination of germline-specific sequences, we used a combination of CRISPR/Cas9 and lightsheet microscopy to investigate the impact …


Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith Jan 2022

Getting To The Root Cause: The Genetic Underpinnings Of Root System Architecture And Rhizodeposition In Sorghum, Farren Smith

Graduate Theses, Dissertations, and Problem Reports

Plants are some of the most diverse organisms on earth, consisting of more than 350,000 different species. To understand the underlying processes that contributed to plant diversification, it is fundamental to identify the genetic and genomic components that facilitated various adaptations over evolutionary history. Most studies to date have focused on the underlying controls of above-ground traits such as grain and vegetation; however, little is known about the “hidden half” of plants. Root systems comprise half of the total plant structure and provide vital functions such as anchorage, resource acquisition, and storage of energy reserves. The execution of these key …


Identifying Epidermal Enriched Genes Required For Planarian Regeneration- Sp. Schmidtea Mediterranea, Pallob Barai Jan 2022

Identifying Epidermal Enriched Genes Required For Planarian Regeneration- Sp. Schmidtea Mediterranea, Pallob Barai

Theses and Dissertations--Biology

The outer epithelial layer covering an organism, commonly known as the epidermis, is crucial for maintaining homeostasis and for the wound healing processes after injury. The planarian epidermis allows flatworms to heal their wounds and virtually restore any missing tissues. Immediately after amputation, planarians contract their muscle and stretch their epidermis to heal the wound area. However, how the planarian epidermis coordinates with other tissues and mechanisms after the initial wound healing processes begins is not understood in detail. I hypothesized that epidermal cell stretching upon wound healing induces transcriptional changes that are required for effective regeneration. To test this …


Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo Jun 2021

Evolution And Development Of The Seed Coat In Gymnosperms, Cecilia Zumajo

Dissertations, Theses, and Capstone Projects

Gymnosperms and angiosperms are the most abundant plant lineages on earth and constitute a turning point in the evolution of plants because they are at the origin of the seed, a key morphological and developmental novelty in the evolution of land plant. Although the morphological variation of the seed, across seed plants, may on its own, explain the complexity of this structure, the origin, and evolution are even more, the understanding of these topics is still under discussion. Evidence shows that previous studies have often lacked the component of gene expression, particularly in species that are not model species. The …


Dynamics Of Hybrid Zones At A Continental Scale, Bradley T. Martin May 2021

Dynamics Of Hybrid Zones At A Continental Scale, Bradley T. Martin

Graduate Theses and Dissertations

Hybridization has traditionally been viewed as a happenstance that negatively impacts populations, but is now recognized as an important evolutionary mechanism that can substantially impact the evolutionary trajectories of gene pools, influence adaptive capacity, and contravene or reinforce divergence. Physiographic processes are important drivers of dispersal, alternately funneling populations into isolation, promoting divergence, or facilitating secondary contact of diverged populations, increasing the potential for hybridization. In North America, glacial-interglacial cycles and geomorphological changes have provided a dynamic backdrop over the last two million years that promoted such oscillations of population contraction and expansion. These biogeographic processes have resulted in regional …


The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little Dec 2020

The Genome-Wide Roles Of The Lung Lineage Transcription Factor Nkx2-1 In The Regulation Of Opposing Cell Fates In Vivo, Danielle Renae Little

Dissertations & Theses (Open Access)

Lineage transcription factors mark, promote, and maintain multiple distinct cell types originating from a common progenitor. Despite their essential role, how such factors function and bind genome wide to orchestrate the epigenetic changes necessary to form and maintain these identities in vivo is unclear. One lineage transcription factor NK Homeobox 2-1 (NKX2-1) is expressed throughout the lung epithelium during development and was thought to be lost in the extraordinarily thin cell type required for gas exchange– the alveolar type 1 (AT1) cell. Complementing precise genetic knockouts with cell type-specific ChIP-seq, ATAC-seq, and scRNA-seq, our study shows that AT1 and AT2 …


Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon Aug 2020

Artificial Intron Technology To Generate Conditional Knock-Out Mice, Amber N. Thomas-Gordon

Dissertations & Theses (Open Access)

Genetic engineering has been re-shaped by the invention of new tools in modern biotechnology in a way that offers precision and efficiency in modifying the genome at a single nucleotide level and/or allowing precise control of gene expression. Such gene manipulation brings about significant findings and revelations in comprehending more about embryonic development, cellular and physiological functions, and disease pathology. Current methods used to produce conditional knockouts have limitations on conditional allele placement and modification varies among genes in different organisms. Thus, a system for generating conditional alleles with fidelity remains a challenge. My goal was to examine an approach …


Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori Jun 2020

Gene Regulation And Cell Fate Choice In The Developing Vertebrate Retina, Sruti Patoori

Dissertations, Theses, and Capstone Projects

The diverse neuronal cell types in the vertebrate retina all originate from multipotent retinal progenitor cells (RPCs). These undergo a series of molecular changes driven by developmental gene regulatory networks (GRNs) as they divide to generate RPCs which are more restricted in their potential fates. It is crucial to understand these GRNs and changes to gene expression in order to understand how cell identity is established during retinal development. In particular, the GRN that promotes the development of cone photoreceptors and horizontal cells is not well-defined. This work focuses on two approaches to further elucidate the components of this regulatory …


A Transcriptomic Exploration Of Hawaiian Drosophilid Development And Evolution, Madeline M. Chenevert Dec 2019

A Transcriptomic Exploration Of Hawaiian Drosophilid Development And Evolution, Madeline M. Chenevert

University of New Orleans Theses and Dissertations

One in four known species of fruit flies inhabit the Hawaiian Islands. From a small number of colonizing flies, a wide range of species evolved, some of which managed to reverse-colonize other continental environments. In order to explore the developmental pathways, which separate the Hawaiian Drosophila proper and the Scaptomyza group that contains reverse-colonized species, the transcriptomes of two better-known species in each group, Scaptomyza anomala and Drosophila grimshawi, were analyzed to find changes in gene expression between the two groups. This study describes a novel transcriptome for S. anomala studies as well as unusual changes in gene expression …


Characterizing Epigenetic Regulation In The Developing Chicken Retina, Bejan Abbas Rasoul May 2018

Characterizing Epigenetic Regulation In The Developing Chicken Retina, Bejan Abbas Rasoul

Masters Theses, 2010-2019

The retina, the sensory neuronal tissue within the eye, is composed of three layers of neuronal cells connected by two synaptic layers lining the inside of the anterior portion of the eye. Multipotent retinal precursor cells are genetically homogeneous and differentiate into mature retinal neurons due to differential gene expression. Differences in gene expression have been correlated with epigenetic modifications such as DNA methylation. DNA methylation of upstream regulatory elements is associated with transcriptional silencing of gene expression. Years of research in retinal development has identified the numerous genes expressed during the main steps of retinal development, however, it is …


Epigenetic Modifications Of Human Placenta Associated With Preterm Birth, Drissa Toure May 2017

Epigenetic Modifications Of Human Placenta Associated With Preterm Birth, Drissa Toure

Theses & Dissertations

Preterm birth is a complex multifactorial process. Despite the well-known role of the placenta in supporting the fetal development and maternal-fetal tolerance, the placental epigenetic modifications and preterm birth (PTB) remains poorly understood and under investigated. Various maternal and environment factors can influence epigenetic programming during fetal development to affect the functioning and structures of organs, including the placenta, which can lead to adverse pregnancy outcomes, including PTB. The understanding of the placental epigenetic alterations and maternal determinants associated with PTB are apparently indispensable for the development of actual diagnosis and methods of prevention and treatment of premature labor. The …


Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant Jan 2016

Characterization Of Somatically-Eliminated Genes During Development Of The Sea Lamprey (Petromyzon Marinus), Stephanie A. Bryant

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during early development that facilitate the elimination of ~20% of the genome from the somatic cell lineage, resulting in distinct somatic and germline genomes. To improve our understanding of the evolutionary/developmental logic of PGR, we generated computational predictions to identify candidate germline-specific genes within a transcriptomic dataset derived from adult germline and the embryonic stages encompassing PGR. Validation studies identified 44 germline-specific genes and characterized patterns of transcription and DNA loss during early embryogenesis. Expression analyses reveal that several of these genes are differentially expressed during early embryogenesis …


Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil Apr 2015

Investigating Notch Signaling And Sequential Segmentation In The Fairy Shrimp, Thamnocephalus Platyurus, Sara Izzat Khalil

Senior Theses and Projects

Segmentation is a key feature of arthropod diversity and evolution. In the standard model for arthropod development, Drosophila melanogaster, segments develop simultaneously by a progressive subdivision of the embryo. By contrast, most arthropods add segments sequentially from a posterior region called the growth zone and in a manner similar to vertebrates.

Recent work, mainly focused on insects, suggests that Notch signaling might play a role in arthropods that segment sequentially. These studies document a potential regulatory similarity between sequentially segmenting arthropods and vertebrates. In vertebrates, somite formation involves a molecular oscillator that functions as a pacemaker, driving periodic expression …


Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li Dec 2014

Arabidopsis Chromatin Remodeler Brahma: Its Functional Interplay With Polycomb Proteins And The Ref6 Histone Demethylase, Chenlong Li

Electronic Thesis and Dissertation Repository

BRAHMA (BRM) is a SWI/SNF-type chromatin remodeling ATPase that plays an important role in regulation of gene expression. Tri-methylation of lysine 27 on histone H3 (H3K27me3) is a histone modification that is associated with transcriptionally repressed genes and catalyzed by Polycomb Group (PcG) proteins. BRM has been proposed to antagonize the function of PcG proteins but the underlying molecular mechanism is unclear. To understand how BRM regulates the function of PcG proteins during plant development, a genome-wide analysis of H3K27me3 in brm mutant was performed using chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq). Loss of BRM leads to increased …


Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko May 2014

Transcriptome Analysis Of Sea Lamprey Embryogenesis, Zakary Ilya Yermolenko

Seton Hall University Dissertations and Theses (ETDs)

The sea lamprey (Petromyzon marinus) has survived throughout evolution for hundreds of millions of years. It is considered an invasive species to the Great Lakes that has caused dramatic changes in the ecosystem for fish communities resulting in the collapse of a fishing industry that was previously valued at billions of dollars. Successful management of the sea lamprey is essential to a sustainable fishing industry and biodiversity. Therefore sea lamprey embryos were studied at various stages of development by growing them in a simulated habitat. RNAs from adult female ovaries and embryos at different time points during embryogenesis …


Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii Jan 2014

Small Rna Expression During Programmed Rearragement Of A Vertebrate Genome, Joseph R. Herdy Iii

Theses and Dissertations--Biology

The sea lamprey (Petromyzon marinus) undergoes programmed genome rearrangements (PGRs) during embryogenesis that results in the deletion of ~0.5 Gb of germline DNA from the somatic lineage. The underlying mechanism of these rearrangements remains largely unknown. miRNAs (microRNAs) and piRNAs (PIWI interacting RNAs) are two classes of small noncoding RNAs that play important roles in early vertebrate development, including differentiation of cell lineages, modulation of signaling pathways, and clearing of maternal transcripts. Here, I utilized next generation sequencing to determine the temporal expression of miRNAs, piRNAs, and other small noncoding RNAs during the first five days of lamprey …