Open Access. Powered by Scholars. Published by Universities.®

Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Genomics

An Approach To Identify Mycobacteriophage Diversity Prior To Dna Sequencing, Charles Gregory Jun 2017

An Approach To Identify Mycobacteriophage Diversity Prior To Dna Sequencing, Charles Gregory

Mahurin Honors College Capstone Experience/Thesis Projects

Over 6,869 Mycobacteriophages have been isolated and purified. Of these, 1,367 genomes have been sequenced at the DNA level and more are added each year through the SEA-PHAGES program. Sequenced mycobacteriophages are grouped into clusters based on a 50% or greater nucleotide identity. The number and breadth of these clusters represents the diversity present in the environment. Each year, as new phages are discovered by students in the SEA-PHAGES program, the question arises, “Which isolates should we sequence?” In order to sequence phages that represent the greatest possible diversity, and thus broaden under-represented clusters and identify new singletons, we need …


Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott Jan 2017

Mrub_1873, Mrub_1872, Mrub_1871 Genes Are Predicted Orthologs Of The B2285, B2284, And B2283 Genes Respectively, Found In Escherichia Coli Coding For Nadh Ubiquinone Oxidoreductase Complex Subunits E, F, And G., Hannah Lohmeier, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_1873, Mrub_1872, and Mrub_1871.We predict that Mrub_1873 (DNA coordinates 1933743..1934309 on the reverse strand), Mrub_1872 (DNA coordinates 1932430..1933746 on the reverse strand), and Mrub_1871 (DNA coordinates 1930055..1932421 on the reverse strand) are subunits of the NADH ubiquinone oxidoreductase complex (00190). The complex catalyzes both the transfer of protons across the cytoplasmic membrane and the transfer of electrons to ubiquinone during …


Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott Jan 2017

Mrub_2642, Mrub_1054, And Mrub_1059 Genes Are Orthologs Of The Escherichia Coli Genes B2942, B0159, And B2687 Genes, Respectively, Which Code For Methionine Adenosyltransferase, Adenosylhomocysteine Nucleosidase, And S-Ribosylhomocysteine Lyase, Nicholas M. Orslini, Dr. Lori R. Scott

Meiothermus ruber Genome Analysis Project

This project is part of the Meiothermus ruber genome analysis project, which uses the bioinformatics tools associated with the Guiding Education through Novel Investigation –Annotation Collaboration Toolkit (GENI-ACT) to predict gene function. We investigated the biological function of the genes Mrub_2642, Mrub_1054, and Mrub_1059.

We predict that Mrub_2642 encodes the enzyme methionine adenosyltransferase (DNA coordinates [2677251…2678426] on the reverse strand), the first step of the methionine degradation pathway (KEGG map number 00270). Methionine adenosyltransferase catalyzes the conversion of the substrates, ATP, L-methionine, and water, to yield the products S-adenosyl-L-methionine (SAM), inorganic phosphate, and diphosphate. Mrub_1054 encodes adenosylhomocysteine nucleosidase (DNA …


Metagomics: A Web-Based Tool For Peptide-Centric Functional And Taxonomic Analysis Of Metaproteomics Data, Michael Riffle, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, Daniel Jaschob, William S. Noble, Brook L. Nunn Jan 2017

Metagomics: A Web-Based Tool For Peptide-Centric Functional And Taxonomic Analysis Of Metaproteomics Data, Michael Riffle, Damon H. May, Emma Timmins-Schiffman, Molly P. Mikan, Daniel Jaschob, William S. Noble, Brook L. Nunn

OES Faculty Publications

Metaproteomics is the characterization of all proteins being expressed by a community of organisms in a complex biological sample at a single point in time. Applications of metaproteomics range from the comparative analysis of environmental samples (such as ocean water and soil) to microbiome data from multicellular organisms (such as the human gut). Metaproteomics research is often focused on the quantitative functional makeup of the metaproteome and which organisms are making those proteins. That is: What are the functions of the currently expressed proteins? How much of the metaproteome is associated with those functions? And, which microorganisms are expressing the …