Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

2005

Dartmouth College

Databases

Discipline

Articles 1 - 2 of 2

Full-Text Articles in Genetics and Genomics

Composite Genome Map And Recombination Parameters Derived From Three Archetypal Lineages Of Toxoplasma Gondii, Asis Khan, Sonya Taylor, Chunlei Su, Aaron J. Mackey, Jon Boyle, Robert Cole, Darius Glover, Keliang Tang, Ian T. Paulsen, Matt Berriman, John C. Boothroyd, Elmer K. Pfefferkorn, J P. Dubey, James W. Ajioka, David S. Roos, John C. Wootton, David Sibley May 2005

Composite Genome Map And Recombination Parameters Derived From Three Archetypal Lineages Of Toxoplasma Gondii, Asis Khan, Sonya Taylor, Chunlei Su, Aaron J. Mackey, Jon Boyle, Robert Cole, Darius Glover, Keliang Tang, Ian T. Paulsen, Matt Berriman, John C. Boothroyd, Elmer K. Pfefferkorn, J P. Dubey, James W. Ajioka, David S. Roos, John C. Wootton, David Sibley

Dartmouth Scholarship

Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii . The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM …


A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore Mar 2005

A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore

Dartmouth Scholarship

Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo.

.