Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Genetics and Genomics

The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap Dec 2005

The Relationship Between Frq-Protein Stability And Temperature Compensation In The Neurospora Circadian Clock, Peter Ruoff, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Temperature compensation is an important property of all biological clocks. In Neurospora crassa, negative-feedback regulation on the frequency (frq) gene's transcription by the FRQ protein plays a central role in the organism's circadian pacemaker. Earlier model calculations predicted that the stability of FRQ should determine the period length of Neurospora's circadian rhythm as well as the rhythm's temperature compensation. Here, we report experimental FRQ protein stabilities in frq mutants at 20 degrees C and 25 degrees C, and estimates of overall activation energies for mutant FRQ protein degradation. The results are consistent with earlier model predictions, i.e., temperature compensation of …


Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap Dec 2005

Genetic And Molecular Analysis Of Phytochromes From The Filamentous Fungus Neurospora Crassa, Allan C. Froehlich, Bosl Noh, Richard D. Vierstra, Jennifer Loros, Jay C. Dunlap

Dartmouth Scholarship

Phytochromes (Phys) comprise a superfamily of red-/far-red-light-sensing proteins. Whereas higher-plant Phys that control numerous growth and developmental processes have been well described, the biochemical characteristics and functions of the microbial forms are largely unknown. Here, we describe analyses of the expression, regulation, and activities of two Phys in the filamentous fungus Neurospora crassa. In addition to containing the signature N-terminal domain predicted to covalently associate with a bilin chromophore, PHY-1 and PHY-2 contain C-terminal histidine kinase and response regulator motifs, implying that they function as hybrid two-component sensor kinases activated by light. A bacterially expressed N-terminal fragment of PHY-2 covalently …


Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota Nov 2005

Principal Component Analysis For Predicting Transcription-Factor Binding Motifs From Array-Derived Data, Yunlong Liu, Matthew P Vincenti, Hiroki Yokota

Dartmouth Scholarship

The responses to interleukin 1 (IL-1) in human chondrocytes constitute a complex regulatory mechanism, where multiple transcription factors interact combinatorially to transcription-factor binding motifs (TFBMs). In order to select a critical set of TFBMs from genomic DNA information and an array-derived data, an efficient algorithm to solve a combinatorial optimization problem is required. Although computational approaches based on evolutionary algorithms are commonly employed, an analytical algorithm would be useful to predict TFBMs at nearly no computational cost and evaluate varying modelling conditions. Singular value decomposition (SVD) is a powerful method to derive primary components of a given matrix. Applying SVD …


Characterization Of The Yeast Ionome: A Genome-Wide Analysis Of Nutrient Mineral And Trace Element Homeostasis In Saccharomyces Cerevisiae, David J. Eide, Suzanne Clark, T . Murlidharan Nair, Mathias Gehl, Michael Gribskov, Mary Lou Guerinot, Jeffrey Harper Aug 2005

Characterization Of The Yeast Ionome: A Genome-Wide Analysis Of Nutrient Mineral And Trace Element Homeostasis In Saccharomyces Cerevisiae, David J. Eide, Suzanne Clark, T . Murlidharan Nair, Mathias Gehl, Michael Gribskov, Mary Lou Guerinot, Jeffrey Harper

Dartmouth Scholarship

Nutrient minerals are essential yet potentially toxic, and homeostatic mechanisms are required to regulate their intracellular levels. We describe here a genome-wide screen for genes involved in the homeostasis of minerals in Saccharomyces cerevisiae. Using inductively coupled plasma-atomic emission spectroscopy (ICP-AES), we assayed 4,385 mutant strains for the accumulation of 13 elements (calcium, cobalt, copper, iron, potassium, magnesium, manganese, nickel, phosphorus, selenium, sodium, sulfur, and zinc). We refer to the resulting accumulation profile as the yeast 'ionome'.


Composite Genome Map And Recombination Parameters Derived From Three Archetypal Lineages Of Toxoplasma Gondii, Asis Khan, Sonya Taylor, Chunlei Su, Aaron J. Mackey, Jon Boyle, Robert Cole, Darius Glover, Keliang Tang, Ian T. Paulsen, Matt Berriman, John C. Boothroyd, Elmer K. Pfefferkorn, J P. Dubey, James W. Ajioka, David S. Roos, John C. Wootton, David Sibley May 2005

Composite Genome Map And Recombination Parameters Derived From Three Archetypal Lineages Of Toxoplasma Gondii, Asis Khan, Sonya Taylor, Chunlei Su, Aaron J. Mackey, Jon Boyle, Robert Cole, Darius Glover, Keliang Tang, Ian T. Paulsen, Matt Berriman, John C. Boothroyd, Elmer K. Pfefferkorn, J P. Dubey, James W. Ajioka, David S. Roos, John C. Wootton, David Sibley

Dartmouth Scholarship

Toxoplasma gondii is a highly successful protozoan parasite in the phylum Apicomplexa, which contains numerous animal and human pathogens. T.gondii is amenable to cellular, biochemical, molecular and genetic studies, making it a model for the biology of this important group of parasites. To facilitate forward genetic analysis, we have developed a high-resolution genetic linkage map for T.gondii . The genetic map was used to assemble the scaffolds from a 10X shotgun whole genome sequence, thus defining 14 chromosomes with markers spaced at ∼300 kb intervals across the genome. Fourteen chromosomes were identified comprising a total genetic size of ∼592 cM …


A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore Mar 2005

A Gene Expression Fingerprint Of C. Elegans Embryonic Motor Neurons, Rebecca M. Fox, Stephen E. Von Stetina, Susan J. Barlow, Christian Shaffer, Kellen L. Olszewski, Jason H. Moore

Dartmouth Scholarship

Differential gene expression specifies the highly diverse cell types that constitute the nervous system. With its sequenced genome and simple, well-defined neuroanatomy, the nematode C. elegans is a useful model system in which to correlate gene expression with neuron identity. The UNC-4 transcription factor is expressed in thirteen embryonic motor neurons where it specifies axonal morphology and synaptic function. These cells can be marked with an unc-4::GFP reporter transgene. Here we describe a powerful strategy, Micro-Array Profiling of C. elegans cells (MAPCeL), and confirm that this approach provides a comprehensive gene expression profile of unc-4::GFP motor neurons in vivo.

.


From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap Feb 2005

From The Cover: Assignment Of An Essential Role For The Neurospora Frequency Gene In Circadian Entrainment To Temperature Cycles, Antonio M. Pregueiro, Nathan Price-Lloyd, Deborah Bell-Pedersen, Christian Heintzen, Jennifer J. Loros, Jay C. Dunlap

Dartmouth Scholarship

Circadian systems include slave oscillators and central pacemakers, and the cores of eukaryotic circadian clocks described to date are composed of transcription and translation feedback loops (TTFLs). In the model system Neurospora, normal circadian rhythmicity requires a TTFL in which a White Collar complex (WCC) activates expression of the frequency (frq) gene, and the FRQ protein feeds back to attenuate that activation. To further test the centrality of this TTFL to the circadian mechanism in Neurospora, we used low-amplitude temperature cycles to compare WT and frq-null strains under conditions in which a banding rhythm was elicited. WT cultures were entrained …