Open Access. Powered by Scholars. Published by Universities.®

Genetics and Genomics Commons

Open Access. Powered by Scholars. Published by Universities.®

Cell and Developmental Biology

Selected Works

Institution
Keyword
Publication Year
Publication
File Type

Articles 31 - 60 of 174

Full-Text Articles in Genetics and Genomics

Recurrent Modification Of A Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, William A. Rogers, Joseph R. Salomone, David J. Tacy, Eric M. Camino, Kristen A. Davis, Mark Rebeiz, Thomas M. Williams Jun 2016

Recurrent Modification Of A Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity, William A. Rogers, Joseph R. Salomone, David J. Tacy, Eric M. Camino, Kristen A. Davis, Mark Rebeiz, Thomas M. Williams

Thomas M. Williams

The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. InDrosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development …


Protein Trap Lines Of Drosophila To Demonstrate Spatio-Temporal Localization Of Proteins In An Undergraduate Lab, Oorvashi Roy Puli, Amit Singh Jun 2016

Protein Trap Lines Of Drosophila To Demonstrate Spatio-Temporal Localization Of Proteins In An Undergraduate Lab, Oorvashi Roy Puli, Amit Singh

Amit Singh

The objective of this teaching note is to generate a laboratory exercise, which allows students to get a hands-on experience of a cell biology technique. The short duration of the laboratory classes is the biggest challenge with the development of a cell biology lab for an undergraduate curriculum. Therefore, it is necessary to design a laboratory exercise that enables the students to carry out cell biological assays in the desired time. This laboratory exercise focuses on tracking protein expression levels along a spatial (space) and temporal (time) axis in developing Drosophila melanogaster organ primordium. Here we use the protein trap …


A Cell Biology Laboratory Exercise To Study Sub-Cellular Organelles In Drosophila, Meghana Tare, Amit Singh Jun 2016

A Cell Biology Laboratory Exercise To Study Sub-Cellular Organelles In Drosophila, Meghana Tare, Amit Singh

Amit Singh

The fast-changing scenario of undergraduate education puts emphasis on introducing students to hands-on techniques as part of their laboratory courses. In order to cater to large numbers of students and the time constraints involved with undergraduate level laboratory courses, there is a need for development of experiments that are cost effective and can be completed in a defined time frame. We have devised a laboratory exercise for teaching cell biology using the Drosophila melanogaster model. Drosophila can be reared in a short period of time in a cost effective manner. We used Drosophila tissue to study the sub-cellular organization of …


Drosophila Adult Eye Model To Teach Scanning Electron Microscopy In An Undergraduate Cell Biology Laboratory, Meghana Tare, Oorvashi Roy Puli, Sarah M. Oros, Amit Singh Jun 2016

Drosophila Adult Eye Model To Teach Scanning Electron Microscopy In An Undergraduate Cell Biology Laboratory, Meghana Tare, Oorvashi Roy Puli, Sarah M. Oros, Amit Singh

Amit Singh

We have devised an undergraduate laboratory exercise to study tissue morphology using fruit fly, Drosophila melanogaster, as the model organism. Drosophila can be reared in a cost effective manner in a short period of time. This experiment was a part of the undergraduate curriculum of the cell biology laboratory course aimed to demonstrate the use of scanning electron microscopy (SEM) technique to study the morphology of adult eye of Drosophila. The adult eye of Drosophila is a compound eye, which comprises of 800 unit eyes, and serves as an excellent model for SEM studies. We used flies that …


Genetic Changes To A Transcriptional Silencer Element Confers Phenotypic Diversity Within And Between Drosophila Species, Winslow C. Johnson, Alison J. Ordway, Masayoshi Watada, Jonathan N. Pruitt, Thomas M. Williams, Mark Rebeiz Jun 2016

Genetic Changes To A Transcriptional Silencer Element Confers Phenotypic Diversity Within And Between Drosophila Species, Winslow C. Johnson, Alison J. Ordway, Masayoshi Watada, Jonathan N. Pruitt, Thomas M. Williams, Mark Rebeiz

Thomas M. Williams

The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, …


Design Of A Factorial Experiment With Randomization Restrictions To Assess Medical Device Performance On Vascular Tissue, Wiebke Diestelkamp, Carissa M. Krane, Margaret Pinnell Apr 2016

Design Of A Factorial Experiment With Randomization Restrictions To Assess Medical Device Performance On Vascular Tissue, Wiebke Diestelkamp, Carissa M. Krane, Margaret Pinnell

Carissa M. Krane

Background: Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. Methods: The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the …


Staufen Negatively Modulates Microrna Activity In Caenorhabditis Elegans, Zhiji Ren, Isana Veksler-Lublinsky, David Morrissey, Victor Ambros Mar 2016

Staufen Negatively Modulates Microrna Activity In Caenorhabditis Elegans, Zhiji Ren, Isana Veksler-Lublinsky, David Morrissey, Victor Ambros

Victor R. Ambros

The double-stranded RNA-binding protein Staufen has been implicated in various post-transcriptional gene regulatory processes. Here we demonstrate that the Caenorhabditis elegans homolog of Staufen, STAU-1, functionally interacts with microRNAs. Loss-of-function mutations of stau-1 significantly suppress phenotypes of let-7 family microRNA mutants, a hypomorphic allele of dicer and a lsy-6 microRNA partial loss-of-function mutant. Furthermore, STAU-1 modulates the activity of lin-14, a target of lin-4 and let-7 family microRNAs, and this modulation is abolished when the 3' untranslated region of lin-14 is removed. Deep sequencing of small RNA cDNA libraries reveals no dramatic change in the levels of microRNAs, or other …


Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko Dec 2015

Fgf2-Induced Effects On Transcriptome Associated With Regeneration Competence In Adult Human Fibroblasts, Olga Kashpur, David Lapointe, Sakthikumar Ambady, Elizabeth Ryder, Tanja Dominko

Sakthikumar Ambady

BACKGROUND: Adult human fibroblasts grown in low oxygen and with FGF2 supplementation have the capacity to tip the healing outcome of skeletal muscle injury - by favoring regeneration response in vivo over scar formation. Here, we compare the transcriptomes of control adult human dermal fibroblasts and induced regeneration-competent (iRC) fibroblasts to identify transcriptional changes that may be related to their regeneration competence. RESULTS: We identified a unique gene-expression profile that characterizes FGF2-induced iRC fibroblast phenotype. Significantly differentially expressed genes due to FGF2 treatment were identified and analyzed to determine overrepresented Gene Ontology terms. Genes belonging to extracellular matrix components, adhesion …


Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder Oct 2015

Rna Recognition By The Caenorhabditis Elegans Oocyte Maturation Determinant Oma-1, Ebru Kaymak, Sean Ryder

Sean P. Ryder

Maternally supplied mRNAs encode proteins that pattern early embryos in many species. In the nematode Caenorhabditis elegans, a suite of RNA-binding proteins regulates expression of maternal mRNAs during oogenesis, the oocyte to embryo transition, and early embryogenesis. To understand how these RNA-binding proteins contribute to development, it is necessary to determine how they select specific mRNA targets for regulation. OMA-1 and OMA-2 are redundant proteins required for oocyte maturation--an essential part of meiosis that prepares oocytes for fertilization. Both proteins have CCCH type tandem zinc finger RNA-binding domains. Here, we define the RNA binding specificity of OMA-1 and demonstrate that …


Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Alg-1 Antimorphic Mutations Uncover Functions For Argonaute In Microrna Guide Strand Selection And Passenger Strand Disposal, Anna Y. Zinovyeva, Isana Veksler-Lublinsky, Ajay A. Vashisht, James A. Wohlschlegel, Victor R. Ambros

Victor R. Ambros

MicroRNAs are regulators of gene expression whose functions are critical for normal development and physiology. We have previously characterized mutations in a Caenorhabditis elegans microRNA-specific Argonaute ALG-1 (Argonaute-like gene) that are antimorphic [alg-1(anti)]. alg-1(anti) mutants have dramatically stronger microRNA-related phenotypes than animals with a complete loss of ALG-1. ALG-1(anti) miRISC (microRNA induced silencing complex) fails to undergo a functional transition from microRNA processing to target repression. To better understand this transition, we characterized the small RNA and protein populations associated with ALG-1(anti) complexes in vivo. We extensively characterized proteins associated with wild-type and mutant ALG-1 and found that the mutant …


Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros Oct 2015

Robust Distal Tip Cell Pathfinding In The Face Of Temperature Stress Is Ensured By Two Conserved Micrornas In Caenorhabditis Elegans, Samantha L. Burke, Molly Hammell, Victor R. Ambros

Victor R. Ambros

Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically …


Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros Oct 2015

Control Of Stem Cell Self-Renewal And Differentiation By The Heterochronic Genes And The Cellular Asymmetry Machinery In Caenorhabditis Elegans, Omid F. Harandi, Victor Ambros

Victor R. Ambros

Transitions between asymmetric (self-renewing) and symmetric (proliferative) cell divisions are robustly regulated in the context of normal development and tissue homeostasis. To genetically assess the regulation of these transitions, we used the postembryonic epithelial stem (seam) cell lineages of Caenorhabditis elegans. In these lineages, the timing of these transitions is regulated by the evolutionarily conserved heterochronic pathway, whereas cell division asymmetry is conferred by a pathway consisting of Wnt (Wingless) pathway components, including posterior pharynx defect (POP-1)/TCF, APC related/adenomatosis polyposis coli (APR-1)/APC, and LIT-1/NLK (loss of intestine/Nemo-like kinase). Here we explore the genetic regulatory mechanisms underlying stage-specific transitions between self-renewing …


Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang Oct 2015

Developmental Decline In Neuronal Regeneration By The Progressive Change Of Two Intrinsic Timers, Yan Zou, Hui Chiu, Anna Zinovyeva, Victor Ambros, Chiou-Fen Chuang, Chieh Chang

Victor R. Ambros

Like mammalian neurons, Caenorhabditis elegans neurons lose axon regeneration ability as they age, but it is not known why. Here, we report that let-7 contributes to a developmental decline in anterior ventral microtubule (AVM) axon regeneration. In older AVM axons, let-7 inhibits regeneration by down-regulating LIN-41, an important AVM axon regeneration-promoting factor. Whereas let-7 inhibits lin-41 expression in older neurons through the lin-41 3' untranslated region, lin-41 inhibits let-7 expression in younger neurons through Argonaute ALG-1. This reciprocal inhibition ensures that axon regeneration is inhibited only in older neurons. These findings show that a let-7-lin-41 regulatory circuit, which was previously …


The Evolution Of Our Thinking About Micrornas, Victor Ambros Oct 2015

The Evolution Of Our Thinking About Micrornas, Victor Ambros

Victor R. Ambros

Our appreciation of the significance of microRNAs to biology at large continues to be an evolving process.


Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros Oct 2015

Victor Ambros: The Broad Scope Of Micrornas. Interview By Caitlin Sedwick, Victor R. Ambros

Victor R. Ambros

Interview with Victor Ambros, who studies how microRNAs impact development.


Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros Oct 2015

Mutations In Conserved Residues Of The C. Elegans Microrna Argonaute Alg-1 Identify Separable Functions In Alg-1 Mirisc Loading And Target Repression, Anna Y. Zinovyeva, Samir Bouasker, Martin J. Simard, Christopher M. Hammell, Victor R. Ambros

Victor R. Ambros

microRNAs function in diverse developmental and physiological processes by regulating target gene expression at the post-transcriptional level. ALG-1 is one of two Caenorhabditis elegans Argonautes (ALG-1 and ALG-2) that together are essential for microRNA biogenesis and function. Here, we report the identification of novel antimorphic (anti) alleles of ALG-1 as suppressors of lin-28(lf) precocious developmental phenotypes. The alg-1(anti) mutations broadly impair the function of many microRNAs and cause dosage-dependent phenotypes that are more severe than the complete loss of ALG-1. ALG-1(anti) mutant proteins are competent for promoting Dicer cleavage of microRNA precursors and for associating with and stabilizing microRNAs. However, …


The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros Oct 2015

The Developmental Timing Regulator Hbl-1 Modulates The Dauer Formation Decision In Caenorhabditis Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between …


Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke Oct 2015

Mir-14 Regulates Autophagy During Developmental Cell Death By Targeting Ip3-Kinase 2, Charles Nelson, Victor Ambros, Eric Baehrecke

Victor R. Ambros

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in …


Micrornas And Developmental Timing, Victor Ambros Oct 2015

Micrornas And Developmental Timing, Victor Ambros

Victor R. Ambros

MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression and differentiation throughout animal development. Genetic analysis of developmental timing in the nematode Caenorhabditis elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and let-7, that regulate cell fate progression and differentiation in C. elegans cell lineages. MicroRNAs perform analogous developmental timing functions in other animals, including mammals. By regulating cell fate choices and transitions between pluripotency and differentiation, microRNAs help to orchestrate developmental events throughout the developing animal, and to play tissue homeostasis roles important for disease, including cancer.


Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros Oct 2015

Dauer Larva Quiescence Alters The Circuitry Of Microrna Pathways Regulating Cell Fate Progression In C. Elegans, Xantha Karp, Victor Ambros

Victor R. Ambros

In C. elegans larvae, the execution of stage-specific developmental events is controlled by heterochronic genes, which include those encoding a set of transcription factors and the microRNAs that regulate the timing of their expression. Under adverse environmental conditions, developing larvae enter a stress-resistant, quiescent stage called 'dauer'. Dauer larvae are characterized by the arrest of all progenitor cell lineages at a stage equivalent to the end of the second larval stage (L2). If dauer larvae encounter conditions favorable for resumption of reproductive growth, they recover and complete development normally, indicating that post-dauer larvae possess mechanisms to accommodate an indefinite period …


The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros Oct 2015

The Embryonic Mir-35 Family Of Micrornas Promotes Multiple Aspects Of Fecundity In Caenorhabditis Elegans, Katherine Mcjunkin, Victor R. Ambros

Victor R. Ambros

MicroRNAs guide many aspects of development in all metazoan species. Frequently, microRNAs are expressed during a specific developmental stage to perform a temporally defined function. The C. elegans mir-35-42 microRNAs are expressed abundantly in oocytes and early embryos and are essential for embryonic development. Here, we show that these embryonic microRNAs surprisingly also function to control the number of progeny produced by adult hermaphrodites. Using a temperature-sensitive mir-35-42 family mutant (a deletion of the mir-35-41 cluster), we demonstrate three distinct defects in hermaphrodite fecundity. At permissive temperatures, a mild sperm defect partially reduces hermaphrodite fecundity. At restrictive temperatures, somatic gonad …


Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros Oct 2015

Caenorhabditis Elegans Micrornas Of The Let-7 Family Act In Innate Immune Response Circuits And Confer Robust Developmental Timing Against Pathogen Stress, Zhiji Ren, Victor R. Ambros

Victor R. Ambros

Animals maintain their developmental robustness against natural stresses through numerous regulatory mechanisms, including the posttranscriptional regulation of gene expression by microRNAs (miRNAs). Caenorhabditis elegans miRNAs of the let-7 family (let-7-Fam) function semiredundantly to confer robust stage specificity of cell fates in the hypodermal seam cell lineages. Here, we show reciprocal regulatory interactions between let-7-Fam miRNAs and the innate immune response pathway in C. elegans. Upon infection of C. elegans larvae with the opportunistic human pathogen Pseudomonas aeruginosa, the developmental timing defects of certain let-7-Fam miRNA mutants are enhanced. This enhancement is mediated by the p38 MAPK innate immune pathway acting …


Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros Oct 2015

Drosophila Let-7 Microrna Is Required For Remodeling Of The Neuromusculature During Metamorphosis, Nicholas S. Sokol, Peizhang Xu, Yuh-Nung Jan, Victor R. Ambros

Victor R. Ambros

The Drosophila let-7-Complex (let-7-C) is a polycistronic locus encoding three ancient microRNAs: let-7, miR-100, and fly lin-4 (miR-125). We find that the let-7-C locus is principally expressed in the pupal and adult neuromusculature. let-7-C knockout flies appear normal externally but display defects in adult behaviors (e.g., flight, motility, and fertility) as well as clear juvenile features in their neuromusculature. We find that the function of let-7-C to ensure the appropriate remodeling of the abdominal neuromusculature during the larval-to-adult transition is carried out predominantly by let-7 alone. This heterochronic role of let-7 is likely just one of the ways in which …


Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros Oct 2015

Effect Of Life History On Microrna Expression During C. Elegans Development, Xantha Karp, Molly Hammell, Maria C. Ow, Victor R. Ambros

Victor R. Ambros

Animals have evolved mechanisms to ensure the robustness of developmental outcomes to changing environments. MicroRNA expression may contribute to developmental robustness because microRNAs are key post-transcriptional regulators of developmental gene expression and can affect the expression of multiple target genes. Caenorhabditis elegans provides an excellent model to study developmental responses to environmental conditions. In favorable environments, C. elegans larvae develop rapidly and continuously through four larval stages. In contrast, in unfavorable conditions, larval development may be interrupted at either of two diapause stages: The L1 diapause occurs when embryos hatch in the absence of food, and the dauer diapause occurs …


Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros Oct 2015

Micrornas: Genetically Sensitized Worms Reveal New Secrets, Victor Ambros

Victor R. Ambros

Why do many microRNA gene mutants display no evident phenotype? Multiply mutant worms that are selectively impaired in genetic regulatory network activities have been used to uncover previously unknown functions for numerous Caenorhabditis elegans microRNAs.


Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros Oct 2015

Prb/Cki Pathways At The Interface Of Cell Cycle And Development, Victor Ambros

Victor R. Ambros

Comment on: The cyclin-dependent kinase inhibitors, cki-1 and cki-2, act in overlapping but distinct pathways to control cell-cycle quiescence during C. elegans development. Buck SH, et al. Cell Cycle 2009; 8:2613-20.


Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu Aug 2015

Three-Dimensional Confocal Microscopy Indentation Method For Hydrogel Elasticity Measurement, Donghee Lee, Md Mahmudur Rahman, You Zhou, Sangjin Ryu

Md Mahmudur Rahman

No abstract provided.


Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor Aug 2015

Crosstalk Between Brca-Fanconi Anemia And Mismatch Repair Pathways Prevents Msh2-Dependent Aberrant Dna Damage Responses, Min Peng, Jenny X. Xie, Anna J. Ucher, Janet Stavnezer, Sharon B. Cantor

Janet M. Stavnezer

Several proteins in the BRCA-Fanconi anemia (FA) pathway, such as FANCJ, BRCA1, and FANCD2, interact with mismatch repair (MMR) pathway factors, but the significance of this link remains unknown. Unlike the BRCA-FA pathway, the MMR pathway is not essential for cells to survive toxic DNA interstrand crosslinks (ICLs), although MMR proteins bind ICLs and other DNA structures that form at stalled replication forks. We hypothesized that MMR proteins corrupt ICL repair in cells that lack crosstalk between BRCA-FA and MMR pathways. Here, we show that ICL sensitivity of cells lacking the interaction between FANCJ and the MMR protein MLH1 is …


Novel Neuroprotective Function Of Apical-Basal Polarity Genecrumbs In Amyloid Beta 42 (Aβ42) Mediated Neurodegeneration, Andrew Steffensmeier, Meghana Tare, Oorvashi Roy Puli, Rohan Modi, Jaison Nainaparampil, Madhuri Kango-Singh, Amit Singh Jul 2015

Novel Neuroprotective Function Of Apical-Basal Polarity Genecrumbs In Amyloid Beta 42 (Aβ42) Mediated Neurodegeneration, Andrew Steffensmeier, Meghana Tare, Oorvashi Roy Puli, Rohan Modi, Jaison Nainaparampil, Madhuri Kango-Singh, Amit Singh

Amit Singh

Alzheimer's disease (AD, OMIM: 104300), a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42) aggregates that trigger neuronal cell death by unknown mechanism(s). We have developed a transgenic Drosophilaeye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb) as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due …


Activation Of Jnk Signaling Mediates Amyloid-Ss- Dependent Cell Death, Meghana Tare, Rohan Modi, Jaison Nainaparampil, Oorvashi Roy Puli, Shimpi Bedi, Pedro Fernandez-Funez, Madhuri Kango-Singh, Amit Singh Jul 2015

Activation Of Jnk Signaling Mediates Amyloid-Ss- Dependent Cell Death, Meghana Tare, Rohan Modi, Jaison Nainaparampil, Oorvashi Roy Puli, Shimpi Bedi, Pedro Fernandez-Funez, Madhuri Kango-Singh, Amit Singh

Amit Singh

Background: Alzheimer's disease (AD) is an age related progressive neurodegenerative disorder. One of the reasons for Alzheimer's neuropathology is the generation of large aggregates of Aß42 that are toxic in nature and induce oxidative stress, aberrant signaling and many other cellular alterations that trigger neuronal cell death. However, the exact mechanisms leading to cell death are not clearly understood. Methodology/Principal Findings: We employed a Drosophila eye model of AD to study how Aß42 causes cell death. Misexpression of higher levels of Aß42 in the differentiating photoreceptors of fly retina rapidly induced aberrant cellular phenotypes and cell death. We found that …