Open Access. Powered by Scholars. Published by Universities.®

Food Chemistry Commons

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Arabinoxylan

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Food Chemistry

Plant Cell Wall Composition And In Vitro Fermentation Characteristics Of Cool-Season Forage Grasses From Two Growing Seasons In Central Kentucky, Sophia Danielle Newhuis Jan 2023

Plant Cell Wall Composition And In Vitro Fermentation Characteristics Of Cool-Season Forage Grasses From Two Growing Seasons In Central Kentucky, Sophia Danielle Newhuis

Theses and Dissertations--Animal and Food Sciences

Grass cell walls are rich in cellulose, hemicellulosic arabinoxylan (AX) polysaccharides, and lignin. AX structural differences such as degree and pattern of branching and the ester-linked phenolic acid content could affect plants’ digestibility when used as forage for livestock. However, there is little information about how these structural elements change over the growing season in the vegetative tissue of cool-season perennial grasses. Enhanced information about the cell wall composition and carbohydrate structure of forage material will provide a foundation for expanding our knowledge of how forage cell wall carbohydrate structures are utilized by ruminants. The objectives of this study were …


Arabinoxylan Structural Profiling Of Cool-Season Pasture Grasses Via High-Performance Anion-Exchange Chromatography With Pulsed Amperometric Detection (Hpaec-Pad) Analysis Of Endoxylanase Digests, Glenna Erin Joyce Jan 2021

Arabinoxylan Structural Profiling Of Cool-Season Pasture Grasses Via High-Performance Anion-Exchange Chromatography With Pulsed Amperometric Detection (Hpaec-Pad) Analysis Of Endoxylanase Digests, Glenna Erin Joyce

Theses and Dissertations--Animal and Food Sciences

Arabinoxylan (AX) is a major structural polysaccharide found in the cell walls of monocots such as cereal grains and pasture grasses. The variety of AX structural components and substitution patterns contribute to AX structural diversity between different monocot species as well as plant tissues.

The rumen is the first digestion site of masticated food material in cattle and provides 70% of energy to host through fermentation of forage. There are many species of pasture grasses that act as a forage source. Differences in AX structure found in these pasture grasses may impact rumen microbial fermentation. Understanding the AX structure of …