Open Access. Powered by Scholars. Published by Universities.®

Terrestrial and Aquatic Ecology Commons

Open Access. Powered by Scholars. Published by Universities.®

Oceanography and Atmospheric Sciences and Meteorology

Las Vegas Wash (Nev.)

Articles 1 - 12 of 12

Full-Text Articles in Terrestrial and Aquatic Ecology

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey Apr 1997

Las Vegas Wash Water Quality Monitoring Program: 1996 Report Of Findings, Richard A. Roline, James J. Sartoris, U.S. Bureau Of Reclamation, U.S. Geological Survey

Publications (WR)

Las Vegas Wash, a natural wash east of the city of Las Vegas, Nevada, carries stormwater, groundwater drainage, and sewage effluent from three sewage treatment plants to Lake Mead. The Wash provides nearly the only surface water outlet for the entire 2,193 mi2 of Las Vegas Valley. A drainage area of 1,586 mi2 contributes directly to the Wash through surface flow which is channeled to Las Vegas Bay of Lake Mead, while drainage of the remaining 607 mi2 is presumably subsurface and may drain toward Las Vegas Wash.

In the 1930's and 1940's, sewage treatment plants were …


Report Of Significant Findings--Las Vegas Bay/Boulder Basin Investigations, James F. Labounty, Michael Horn, Bureau Of Reclamation Apr 1996

Report Of Significant Findings--Las Vegas Bay/Boulder Basin Investigations, James F. Labounty, Michael Horn, Bureau Of Reclamation

Publications (WR)

Field sampling was carried out between 0830 and 1500 beginning at the confluence of Las Vegas Wash and the Inner Las Vegas Bay. Ten (10) locations were sampled, each in a similar manner. Locations of sampling stations are in line from the Wash-Bay confluence to a point midway between Saddle and Black Islands. In addition, sampling was done at a location midway between Sentinel Island and the base of Fortification Hill, and at the buoy line in front of Hoover Dam. Sampling stations are labeled from LV01, at Wash-Bay confluence, to LV17 at Hoover Dam. A significant data collection point …


Environmental Assessment Of Las Vegas Wash And Lake Mead Artificial Wetlands Demonstration Project, John R. Baker, R. M. Gersberg, U.S. Environmental Protection Agency Feb 1988

Environmental Assessment Of Las Vegas Wash And Lake Mead Artificial Wetlands Demonstration Project, John R. Baker, R. M. Gersberg, U.S. Environmental Protection Agency

Publications (WR)

The effective use of artificial wetlands for treatment of municipal wastewater is well documented; however, design and economic data for artificial wetlands development are limited (Gersberg et al., 1984a). This is due partly to regional differences in climate, soils, and vegetation and partly to the desired waste treatment. As a result, specific treatment levels and cost benefits relative to the use of an artificial wetlands for a particular site cannot be evaluated adequately without a pilot demonstration project. Las Vegas Wash receives sewage effluent from the Las Vegas metropolitan area and has been designated as a wetlands community park. Las …


Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson Jan 1988

Limnological Monitoring Data For Lake Mead During 1987: Technical Report No. 20, Larry J. Paulson

Publications (WR)

Limnological monitoring was conducted in Las Vegas Bay and Boulder Basin from April to December of 1987. The purpose of the monitoring was to (i) document possible changes in water quality resulting from decreased phosphorus loading in Las Vegas Wash, and (ii) establish a data base for evaluating the adequacy of water quality standards.


Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection May 1987

Las Vegas Wash And Lake Mead Proposed Water Quality Standards: Revisions And Rationale, State Of Nevada: Division Of Environmental Protection

Publications (WR)

Rationale of review and for proposed changes to the Nevada Pollution Control Regulations (NAC 445.1354, 445.1355, 445.1356, 455.1367, 445.1352, 445.1353, 445.1350, 445.1351) before the State Environmental Commission on June 23 and 24, 1987.


Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency Feb 1984

Las Vegas Wash Multispectral Scanner Survey, T. H. Mace, M. V. Olsen, Environmental Protection Agency

Publications (WR)

At the request of the U.S. Bureau of Reclamation, Boulder City, Nevada, the U.S. Environmental Protection Agency's Environmental Monitoring Systems Laboratory at Las Vegas collected multispectral scanner imagery of Las Vegas Wash on October 1, 1982.

A combined maximum likelihood classification and editing procedure was used to classify the multispectral scanner imagery into 12 categories of land cover. The classification identified four categories of marsh vegetation, one category of riparian, two categories of mixed scrub, and two desert categories. Turbid water and cultivated land formed an "other" category. Area tabulations were formed by georeferencing the classification to the Universal Transverse …


Water Quality Trends In The Las Vegas Wash Wetlands, F. A. Morris, L. J. Paulson Jan 1983

Water Quality Trends In The Las Vegas Wash Wetlands, F. A. Morris, L. J. Paulson

Publications (WR)

The Las Vegas Wash is a wetlands ecosystem that acts to buffer the effects of wastewater discharges on the receiving waters of Lake Mead. The wash is the terminus for the 4,144 km2 Las Vegas Valley drainage basin, emptying into Las Vegas Bay of Lake Mead (Colorado River). It is in the northern Mojave desert, which receives an average of only 10 cm of rainfall annually. The Las Vegas Wash is technically an artificial wetland supported almost entirely by the perennial flows from sewage treatment plants. These flows contribute an average of 3-7 t of nutrients (nitrogen and phosphorus) and …


Influence Of Las Vegas Wash Density Current On Nutrient Availability And Phytoplankton Growth In Lake Mead, John R. Baker, Larry J. Paulson Jun 1980

Influence Of Las Vegas Wash Density Current On Nutrient Availability And Phytoplankton Growth In Lake Mead, John R. Baker, Larry J. Paulson

Publications (WR)

Density currents are commonly formed in reservoirs because of temperature or salinity induced density differences between inflowing and receiving waters. Anderson and Pritchard (1951) were among the first to demonstrate this in their investigations of density currents in Lake Mead. They found that the Colorado River formed an underflow in Lake Mead during the winter, an overflow in the spring and an interflow in the summer and fall. Wunderlich and Elder (1973) have since described the hydromechanics of these types of flow patterns, and density currents have been reported for several other large reservoirs (Carmack et al. 1979, Johnson and …


Limnological Aspects Of Lake Mead, Nevada-Arizona, John R. Baker, James E. Deacon, Thomas A. Burke, Samuel S. Egdorf, Larry J. Paulson, Richard W. Tew, Bureau Of Reclamation Jun 1977

Limnological Aspects Of Lake Mead, Nevada-Arizona, John R. Baker, James E. Deacon, Thomas A. Burke, Samuel S. Egdorf, Larry J. Paulson, Richard W. Tew, Bureau Of Reclamation

Publications (WR)

Lake Mead is a deep, subtropical, moderately productive, desert impoundment with a negative heterograde oxygen profile occurring during; the summer stratification. investigations of the Boulder Basin of Lake Mead by the University of Nevada were initiated in November 1971. The primary objective of the study was to determine what effects industrial and sewage effluent from the Las Vegas metropolitan area, discharged into Las Vegas Bay, have had on the water quality and limnological conditions of Boulder Basin. Data from the 1975-76 period are presented in detail, with earlier data included in the summaries and discussions.

Measurements of water temperature, dissolved …


Seasonal And Spatial Variation In Primary Productivity In Boulder Basin, Lake Mead, Clark County, Nevada, Isamu Aoki May 1975

Seasonal And Spatial Variation In Primary Productivity In Boulder Basin, Lake Mead, Clark County, Nevada, Isamu Aoki

Publications (WR)

The 14C light and dark bottle technique for measurement of primary production was utilized as a means of assessing the amount of inorganic carbon being converted Into organic form by the photosynthesis of phytoplankton populations In the Boulder Basin of Lake Mead.

Spatial and time series changes of productivity levels observed at eight sampling locations within Boulder Basin Indicate that the Influence of treated municipal arts' industrial effluent flowing into Les Vegas Bay is contributing high levels of available nutrients at Las Vegas Wash Inlet to cause productivity to approximate those levels associated with polluted waters.

Productivity levels at …


Report On Water Pollution Problems In Las Vegas Wash And Las Vegas Bay, Environmental Protection Agency Nov 1971

Report On Water Pollution Problems In Las Vegas Wash And Las Vegas Bay, Environmental Protection Agency

Publications (WR)

This report was prepared by the Federal Water- Quality Administration, Pacific Southwest Region, now the Environmental Protection Agency (EPA), Region IX, at the request of the State of Nevada, Department of Health, Welfare, and rehabilitation. In a letter, dated December 5, 1969, this agency asked for technical assistance, as authorized by the Federal Water Pollution Control Act, in developing discharge standards appropriate for Las Vegas Bay, Lake Mead, and the Lower Colorado River. The subsequent study was performed by EPA from January through August, 1970. The establishment of Nevada State Water Quality Standards for these waters will enable responsible officials …


The Effect Of Las Vegas Wash Effluent Upon The Water Quality In Lake Mead, D. A. Hoffman, P. R. Tramutt, F. C. Heller, Bureau Of Reclamation Jan 1971

The Effect Of Las Vegas Wash Effluent Upon The Water Quality In Lake Mead, D. A. Hoffman, P. R. Tramutt, F. C. Heller, Bureau Of Reclamation

Publications (WR)

This study developed from observations made during an earlier study on Lake Mead which was reported in CHE-70, Water Quality Study of Lake Mead. Results from that study indicated that poor-quality water was flowing into the Las Vegas Bay reach of Boulder Basin, Lake Mead. Also reports of deteriorating water quality, resulting in taste and odors in domestic water supplies taken from Boulder Basin as well as a reduction in the attractiveness of Las Vegas Bay for recreational uses caused by aquatic plants and algae blooms, indicated a need for a concentrated study concerning the effects of flows from Las …