Open Access. Powered by Scholars. Published by Universities.®

Terrestrial and Aquatic Ecology Commons

Open Access. Powered by Scholars. Published by Universities.®

Agronomy and Crop Sciences

Selected Works

Miscanthus

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Terrestrial and Aquatic Ecology

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi May 2015

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum(switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested yield …


A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi Sep 2012

A Regional Comparison Of Water Use Efficiency For Miscanthus, Switchgrass And Maize, Andy Vanloocke, Tracy E. Twine, Marcelo Zeri, Carl J. Bernacchi

Andy VanLoocke

The production of cellulosic feedstocks for renewable fuels will increase over the coming decades. However, it is uncertain which feedstocks will be best suited for bioenergy production. A key factor dictating feedstock selection for a given region is water use efficiency (WUE), the trade-off between evapotranspiration (ET) and carbon uptake or productivity. Using an ecosystem model, two of the top candidate cellulosic feedstocks, Miscanthus × giganteus (miscanthus) and Panicum virgatum (switchgrass) were compared to Zea mays L. (maize), the existing dominant bioenergy feedstock, with 0 and 25% residue removal for the Midwest US. We determined productivity in three ways: harvested …


The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine Jul 2010

The Impacts Of Miscanthus×Giganteus Production On The Midwest Us Hydrologic Cycle, Andy Vanloocke, Carl J. Bernacchi, Tracy E. Twine

Andy VanLoocke

Perennial grasses are being considered as candidates for biofuel feedstocks to provide an alternative energy source to fossil fuels. Miscanthus×giganteus (miscanthus), in particular, is a grass that is predicted to provide more energy per sown area than corn ethanol and reduce net carbon dioxide emissions by increasing the storage of carbon belowground. Miscanthus uses more water than Zea mays (maize), mainly as a result of a longer growing season and higher productivity. Conversion of current land use for miscanthus production will likely disrupt regional hydrologic cycles, yet the magnitude, timing, and spatial distribution of effects are unknown. Here, we show …