Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Cell Biology

Role Of Stat3 In Human Nk Cell Functions, Prasad V. Phatarpekar Dec 2015

Role Of Stat3 In Human Nk Cell Functions, Prasad V. Phatarpekar

Dissertations & Theses (Open Access)

Natural Killer (NK) cells are cytotoxic lymphocytes, which play a critical role in the immune response against malignant cells and microbial infections. NK cells are equipped with activating receptors, which upon detecting ligands expressed on stressed cells induce cytolytic activity of NK cells. Stimulation of NK cell proliferation and priming of NK cytolytic capability are accomplished by cytokines, which mediate their signals mainly through JAK-STAT signaling pathway. Previously, we found that K562 cells genetically modified to express membrane bound IL-21 (mbIL-21), which predominantly activates STAT3, induce robust expansion and activation of human NK cells. Further investigations revealed role of STAT3 …


The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy Dec 2015

The Tumor Suppressor Notch Inhibits Head And Neck Squamous Cell Carcinoma (Hnscc) Tumor Growth And Progression By Modulating Proto-Oncogenes Axl And Ctnnal1 (Α-Catulin), Shhyam Moorthy, Shhyam Moorthy

Dissertations & Theses (Open Access)

Background: Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common malignancy worldwide, with roughly 300,000 cancer related deaths occurring globally each year. The survival of patients with HNSCC has not changed significantly over the past decade, leading investigators to search for promising molecular targets. To identify new treatment targets and biomarkers that could better guide therapy, we previously characterized the genomic alterations from primary HNSCC patient samples. We were among the first to discover that NOTCH1 is one of the most frequently mutated genes in this cancer type. The spectrum of inactivating NOTCH1 mutations in HNSCC suggested …


Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner Dec 2015

Preventing Thymus Involution In K5.Cyclin D1 Transgenic Mice Sustains The Naïve T Cell Compartment With Age, Michelle L. Bolner

Dissertations & Theses (Open Access)

The thymus maintains T cell receptor (TCR) repertoire diversity through perpetual release of self-MHC restricted naive T cells. However, thymus involution during the aging process reduces naïve T cell output, leading to defective immune responsiveness to newly encountered antigens. We have found that early thymus involution precipitates the age-associated shift favoring memory T cell dominancy in young control mice. Furthermore, we have shown that age-related thymus involution is prevented in mice expressing a keratin 5 promoter-driven Cyclin D1 (K5.D1) transgene in thymic epithelial cells (TECs). Thymopoiesis occurs normally in K5.D1 transgenic thymi and sustains T cell output to prevent the …


Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao Dec 2015

Molecular Regulation Of Vascular Calcification In Murine Models Of Atherosclerosis, Shanshan Gao

Dissertations & Theses (Open Access)

Background: Calcification occurs often in the atherosclerotic lesions of patients with coronary heart disease and animals with hypercholesterolemia, such as apolipoprotein-E deficient (ApoE-/-) mice. However, the mechanism(s) underlying the development of calcification in atherosclerosis remains unclear. ApoE acts as a lipid transporter, but also has been recognized as a potential regulator of osteogenesis. Little information is available as to whether ApoE has any direct impact on osteogenesis and calcification in vascular smooth muscle cells (VSMC). Several signal transduction pathways play a role in regulation of calcification, including the Wnt/β-catenin system and potentially GTAP, an ubiquitin-conjugating enzyme responsible for protein …


Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd Dec 2015

Normal Glycolytic Enzyme Activity Is Critical For Hypoxia Inducible Factor-1a Activity And Provides Novel Targets For Inhibiting Tumor Growth, Geoffrey Grandjean Phd

Dissertations & Theses (Open Access)

Normal Glycolytic Enzyme Activity is Critical for Hypoxia Inducible Factor-1α Activity and Provides Novel Targets for Inhibiting Tumor Growth

By Geoffrey Grandjean

Advisory Professor: Garth Powis, D. Phil

Unique to proliferating cancer cells is the observation that their increased need for energy is provided by a high rate of glycolysis followed by lactic acid fermentation in a process known as the Warburg Effect, a process many times less efficient than oxidative phosphorylation employed by normal cells to satisfy a similar energy demand [1]. This high rate of glycolysis occurs regardless of the concentration of oxygen in the cell and …


Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler Aug 2015

Histone H3 K4 Methylation Regulates The Spindle Assembly Checkpoint Through Direct Binding Of Multiple Checkpoint Components And Cdc20, Andria C. Schibler

Dissertations & Theses (Open Access)

Histone H3K4 methylation is conserved across species and is associated with active transcription. By using Saccharomyces cerevisiae, we found histone H3K4 methylation has a previously unknown role in regulating mitosis through the Spindle Assembly Checkpoint. The Spindle Assembly Checkpoint ensures duplicated chromosomes are segregated correctly and each daughter cell receives one full copy of the genome. Our data show SET1 mutants and histone H3K4 mutants display a resistance to the mitotic poison, benomyl. Moreover methylated histone H3 directly binds to Spindle Assembly Checkpoint proteins Bub3 and Mad2 as well as the activator of the Anaphase Promoting Complex (APC) protein …


Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo Aug 2015

Direct Regulation Of Apoptosis By Linear Ubiqutin Chain Assembly Complex (Lubac) And Feedback Regulation Of Lubac Function By Caspases, Donghyun Joo

Dissertations & Theses (Open Access)

Tumor Necrosis Factor-alpha (TNF-α) is a cytokine that plays a role in various cellular processes such as proliferation, differentiation (mainly through NF-κB signaling) and death (via apoptosis signaling). Recently, linear ubiquitination by LUBAC (linear ubiquitin chain assembly complex) was reported to have a regulatory function in TNF-α mediated NF-κB activation. Although LUBAC is suggested to control not only NF-kB signaling but also the apoptosis pathway, the precise mechanism of apoptosis regulation remains unknown. Moreover, NF-κB and apoptosis pathways have opposed but fundamental functions for various cellular processes. Although these two pathways actively interplay to balance the death and survival, the …


Understanding The Role Of Sumoylation In Regulating Lkb1 Function, Joan W. Ritho May 2015

Understanding The Role Of Sumoylation In Regulating Lkb1 Function, Joan W. Ritho

Dissertations & Theses (Open Access)

Energy homeostasis in a cell is critical for its survival during metabolic stress. Liver kinase B1 (LKB1), one of the key regulators of cellular energy balance, was initially discovered as a tumor suppressor mutated in patients with Peutz-Jeghers syndrome. Germline mutations in LKB1 predispose patients to develop several benign and malignant tumors including gastrointestinal and lung cancers. In 2003, several groups demonstrated that LKB1is a major upstream kinase of the energy sensor AMP-activated protein kinase (AMPK), directly associating it with the regulation of energy balance in cells. During energy stress, LKB1 phosphorylates AMPK at threonine 172 (T172) resulting in AMPK …


Src Homology 2 Domain-Containing 5’-Inositol Phosphatase-2 (Ship2) Is An Effector Of Lymphatic Dysfunction, Germaine D. Agollah May 2015

Src Homology 2 Domain-Containing 5’-Inositol Phosphatase-2 (Ship2) Is An Effector Of Lymphatic Dysfunction, Germaine D. Agollah

Dissertations & Theses (Open Access)

The lymphatic system is essential for the transport of excess fluid, protein, and foreign materials from interstitial tissues to lymph nodes; for immune surveillance, and to maintain fluid homeostasis. Dysregulated lymphatics can be attributed to pathological conditions including tumor metastasis, inflammation, chronic wounds, obesity, blood vascular disorders, and lymphedema. Of these, lymphedema is the most extreme of lymphatic disorders and is represented by a spectrum of symptoms ranging from mild, subtle presentation to severe, disfiguring, overt presentation. Lymphedema is more manageable in the early stages of disease but severely reduces quality of life with progression. Due to lack of molecular …


Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh May 2015

Dna Polymerase Θ (Polq) And The Cellular Defense Against Dna Damage, Matthew J. Yousefzadeh

Dissertations & Theses (Open Access)

In mammalian cells, DNA polymerase θ (POLQ) is an unusual specialized DNA polymerase whose in vivo function is under active investigation. The protein is comprised of an N-terminal helicase-like domain, a C-terminal DNA polymerase domain, and a large central domain that spans between the two. This arrangement is also found in the Drosophila Mus308 protein, which helps confer resistance to DNA interstrand crosslinking agents. Homologs of POLQ and Mus308 are found in eukaryotes, including plants, but a comparison of phenotypes suggests that not all of these genes are functional orthologs. Flies with defective Mus308 are sensitive to DNA interstrand crosslinking …


Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt May 2015

Regulation Of Cell Adhesion By The Ferm Proteins, Ptpn14 And Merlin, Patty Dimarco Hewitt

Dissertations & Theses (Open Access)

Cell-cell adhesion is critical for the control of tissue organization and homeostasis. A family of proteins that regulate cell-cell adhesions is the FERM (4.1 protein, Ezrin, Radixin, Moesin) domain-containing proteins.One FERM domain protein, the non-receptor tyrosine phosphatase PTPN14, is mutated or deleted in several human cancers suggesting that it may be involved in tumor development and/or progression. Additionally, the loss of the FERM domain protein Merlin is associated with tumor development and metastasis.Both PTPN14 and Merlin have been shown to localize and possibly regulate adherens junction (AJ) functions. This work sought to determine if …


Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua May 2015

Igfbp2 Potentiates Egfr-Stat3 Signaling In Glioma, Yingxuan Chua

Dissertations & Theses (Open Access)

Gliomas are clinically challenging brain tumors with dismal survival rates due to its infiltrative nature and ineffective standard therapy. Insulin-like growth factor binding protein 2 (IGFBP2) is a pleiotropic oncogenic protein that has both extracellular and intracellular functions. Despite a clear causal role in cancer development, the contributions of intracellular IGFBP2 to tumor development and progression are poorly understood. Here we present evidence that both exogenous IGFBP2 treatment and cellular IGFBP2 overexpression lead to aberrant activation of EGFR, which subsequently activates STAT3 signaling. Furthermore, we demonstrate that IGFBP2 augments the nuclear accumulation of EGFR to potentiate STAT3 transactivation activities, via …