Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2012

Discipline
Institution
Keyword
Publication

Articles 1 - 30 of 65

Full-Text Articles in Cell Biology

Characterization Of The Circadian Properties Of Runt-Related Transcription Factor 2 (Runx2) And Its Role In The Suprachiasmatic Nucleus, Meghan E. Reale Dec 2012

Characterization Of The Circadian Properties Of Runt-Related Transcription Factor 2 (Runx2) And Its Role In The Suprachiasmatic Nucleus, Meghan E. Reale

Electronic Thesis and Dissertation Repository

Circadian rhythms orchestrate physiological, behavioral and cognitive processes in order to anticipate and adapt organisms to key environmental cues. These endogenously driven oscillations are generated by a network of interlocked auto-regulatory transcriptional-translational feedback loops driven forward by the Bmal1/Clock heterodimer transcription factor. Given the ubiquitous and dynamic quality of circadian rhythms, the identification of factors involved in the coordination and regulation of the endogenous oscillations is central in broadening our understanding of biological timing systems. In an examination of gene expression in the mammalian central circadian pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), revealed a previously unreported rhythmic expression of runt-related …


Functional Significance Of Ilk-Elmo2 Interactions In Epidermal Keratinocytes, Ernest Ho Dec 2012

Functional Significance Of Ilk-Elmo2 Interactions In Epidermal Keratinocytes, Ernest Ho

Electronic Thesis and Dissertation Repository

The epidermis consists of a basal layer of undifferentiated keratinocytes and multiple suprabasal layers of differentiated keratinocytes. Undifferentiated keratinocytes are adherent and highly motile, whereas differentiated keratinocytes are comparatively less motile and downregulate cell attachments to the extracellular matrix. Integrin-linked kinase (ILK) is a scaffold protein implicated in the regulation of many cellular functions in keratinocytes, including cell attachment, migration, phagocytosis, and protein trafficking. To determine the mechanisms by which ILK is involved in these processes, I sought to identify other proteins which may interact with ILK in keratinocytes. I identified Engulfment and Cell Motility 2 (ELMO2) to interact with …


Timp-2 Decreases The Invasive Potential Of Mcf-7 And Mdamb-231 Cells Independent Of Mmp Inhibition, Mario Cepeda Dec 2012

Timp-2 Decreases The Invasive Potential Of Mcf-7 And Mdamb-231 Cells Independent Of Mmp Inhibition, Mario Cepeda

Electronic Thesis and Dissertation Repository

Tissue Inhibitors of Metalloproteinases (TIMPs) are the natural inhibitors of Matrix Metalloproteinases (MMPs), a family of proteins primarily responsible for Extracellular Matrix (ECM) remodeling. TIMP-2 is a special member of the TIMP family as it is both an inhibitor and promoter of MMP activity, and can also bind the cell surface and signal inside the cell to influence cell behavior. In this study, MDAMB-231 and MCF-7 breast cancer cells were treated with physiological concentration of TIMP-2, which decreased the invasive potential of both cell lines. This was independent of MMP inhibition, and instead a decrease in the expression and secretion …


Expansion Of Human Induced Pluripotent Stem Cells On Synthetic Substrate In Defined Medium, Huantong Yao Dec 2012

Expansion Of Human Induced Pluripotent Stem Cells On Synthetic Substrate In Defined Medium, Huantong Yao

Graduate Theses and Dissertations

Human induced pluripotent stem cells (hiPSCs) have the potential to generate patient-specific cells to treat many incurable diseases by cell replacement therapy. However, so far the culture of hiPSCs depends greatly on feeder cells or Matrigel which has safety issues. Thus, chemically defined substrates that could provide niches necessary for cell attachment and proliferation are preferred for clinical application of hiPSCs. Recently, Corning Life Sciences has developed synthetic peptide-functionalized cell culture surface, referred to as Corning® Synthemax that support self-renewal and differentiation of human embryonic stem cell (hESC). In this work, we have collaborated with Corning to investigate the attachment, …


Molecular Mechanisms Regulating Neonatal Oocyte Survival And Primordial Follicle Formation In The Mouse Ovary, Robin L. Jones Dec 2012

Molecular Mechanisms Regulating Neonatal Oocyte Survival And Primordial Follicle Formation In The Mouse Ovary, Robin L. Jones

Biology - Dissertations

In mammals, formation of the primordial follicle is a complex process involving the breakdown of germ cell cysts, where oocytes must separate from each other and subsequently become surrounded by somatic cells. As cysts separate, a large number of germ cells are lost by apoptosis, however the mechanisms by which cyst breakdown and germ cell death occur are not well understood. We first hypothesized that two anti-apoptotic regulators from the BCL2 family of proteins, BCL2 and MCL1, may be responsible for regulating neonatal oocyte survival. To elucidate the effects of BCL2 in the neonatal ovary, we examined ovaries of both …


Characterization Of A Novel Role For The Tousled- Like Kinase In Kinetochore Assembly And Function In Caenorhabditis Elegans, Jessica M. De Orbeta Dec 2012

Characterization Of A Novel Role For The Tousled- Like Kinase In Kinetochore Assembly And Function In Caenorhabditis Elegans, Jessica M. De Orbeta

Dissertations & Theses (Open Access)

Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating …


Biochemical Characterization Of Binding Partners Of Two Hsp70 Co-Chaperones In Saccharomyces Cerevisiae, Jacob Verghese Dec 2012

Biochemical Characterization Of Binding Partners Of Two Hsp70 Co-Chaperones In Saccharomyces Cerevisiae, Jacob Verghese

Dissertations & Theses (Open Access)

Cells are exposed to a variety of environmental and physiological changes including temperature, pH and nutrient availability. These changes cause stress to cells, which results in protein misfolding and altered cellular protein homeostasis. How proteins fold into their three-dimensional functional structure is a fundamental biological process with important relevance to human health. Misfolded and aggregated proteins are linked to multiple neurodegenerative diseases, cardiovascular disease and cystic fibrosis. To combat proteotoxic stress, cells deploy an array of molecular chaperones that assist in the repair or removal of misfolded proteins.

Hsp70, an evolutionarily conserved molecular chaperone, promotes protein folding and helps maintain …


Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru Oct 2012

Real-Time Analysis Of Brain Tumor Cell Dynamics: Novel Thermoelectric Detection Of L-Glutamate And Cell Metabolism Using Microfluidics, Siva Mahesh Tangutooru

Doctoral Dissertations

This study describes the design, fabrication and applications of a novel thermoelectric microfluidic bio-sensor. The bio-sensor is used for real time detection of the L-glutamate (L-glu) dynamics and metabolism for brain tumor cells immobilized in a microfluidic device. The microfluidic device is fabricated using a polymer/glass laminating technique (Xurography). An antimony-bismuth thin-film thermopile (primary sensing element) is integrated to the microfluidic device. The brain tumor cells are immobilized over the thermopile covering measuring and reference junctions of the thermopile using a poly-l-lysine coating layer. L-glutamate oxidase (L-GLOD) is immobilized over the measuring junctions of the thermopile prior to the immobilization …


Identification And Functional Characterization Of The Zebrafish Gene Quetschkommode (Que), Timo Friedrich Sep 2012

Identification And Functional Characterization Of The Zebrafish Gene Quetschkommode (Que), Timo Friedrich

Open Access Dissertations

Locomotion in vertebrates depends on proper formation and maintenance of neuronal networks in the hind-brain and spinal cord. Malformation or loss of factors required for proper maintenance of these networks can lead to severe neurodegenerative diseases limiting or preventing locomotion. A powerful tool to investigate the genetic and cellular requirements for development and/or maintenance of these networks is a collection of zebrafish mutants with defects in motility. The zebrafish mutant quetschkommode (que) harbors a previously unknown gene defect leading to abnormal locomotor behavior. Here I show that the que mutants display a seizure-like behavior starting around four days post fertilization …


Phenotypic Analysis Of Schizosaccharomyces Pombe Strains Bearing Site-Directed Mutations In The Carboxy Terminal Domain Of The Largest Subunit Of Rna Polymerase Ii, Kyle S. Hoffman Aug 2012

Phenotypic Analysis Of Schizosaccharomyces Pombe Strains Bearing Site-Directed Mutations In The Carboxy Terminal Domain Of The Largest Subunit Of Rna Polymerase Ii, Kyle S. Hoffman

Electronic Thesis and Dissertation Repository

The phosphorylation status of the largest sub-unit of RNA polymerase II (Rpb1p) is crucial to the control of transcription in eukaryotes. The domain subject to this phosphorylation is known as the carboxyl terminal domain (CTD) and consists of multiple repeats (from 20 to 52 copies depending on the species in question) of the heptad sequence Y1S2P3T4S5P6S7. Interestingly, differential phosphorylation of S2, S5, and S7 residues is known to play an important role in the control of pre-mRNA processing. To determine the number …


The Effects Of Telomerase Inhibition On Cellular Senescence In Fetal Guinea Pig Muscle Cells, Stephanie E. Hallows Aug 2012

The Effects Of Telomerase Inhibition On Cellular Senescence In Fetal Guinea Pig Muscle Cells, Stephanie E. Hallows

Electronic Thesis and Dissertation Repository

Low birth weight infants have a higher risk of developing metabolic syndrome, including Type II Diabetes. Fetal muscle is growth restricted in low birth weight infants and is the main tissue for determining insulin resistance. Recent studies indicate premature senescence in low birth weight rodents, which could lead to adult disease. In utero environments may play a role in the development of senescence through increased reactive oxygen species (ROS). Telomerase is present at high levels during development and protects cells from cellular stress and apoptosis. We postulate that telomerase protects cells from DNA damage and premature senescence. A primary culture …


Role Of Stat3 In Keratinocyte Stem Cells During Skin Tumorigenesis, Dharanija Rao Aug 2012

Role Of Stat3 In Keratinocyte Stem Cells During Skin Tumorigenesis, Dharanija Rao

Dissertations & Theses (Open Access)

STATs play crucial roles in a wide variety of biological functions, including development, proliferation, differentiation, migration and in cancer development. In the present study, we examined the impact of Stat3 deletion or activation on behavior of keratinocytes, including keratinocyte stem cells (KSCs). Deletion of Stat3 specifically in the bulge region of the hair follicle using K15.CrePR1 X Stat3fl/fl mice led to decreased tumor development by altering survival of bulge region KSCs. To further understand the role of KSCs in skin tumorigenesis, K5.Stat3C transgenic (Tg) mice which express a constitutively active/dimerized form of Stat3 called Stat3C via the bovine keratin …


An Analysis Of The Redox Properties And Stability Of Chlamydomonas Reinhardtii Cytochrome F, Cytochrome C6, And Mutants Thereof, Nicole Lynn Vanderbush Aug 2012

An Analysis Of The Redox Properties And Stability Of Chlamydomonas Reinhardtii Cytochrome F, Cytochrome C6, And Mutants Thereof, Nicole Lynn Vanderbush

Graduate Theses and Dissertations

This body of work presents mutagenesis studies conducted on two c-type cytochromes from Chlamydomonas reinhardtii. Cytochrome f, a unique c-type cytochrome, is investigated in regards to its redox potential, the dependence of the redox potential, and the thermal stability of the protein. The mutations made were Y1F, Y9F, Y160F, Y160L, R156L, and R156K. The residues that were mutated surround the heme. It was found that, relative to the wild-type, only the Y160L and R156 mutants showed any difference in midpoint potential at pH 7. Wild-type and mutants both had a midpoint potential that was dependent upon pH indicating that none …


Cell Bioenergetics In Leghorn Male Hepatoma Cells And Immortalized Chicken Liver Cells In Response To 4-Hydroxynonenal Induced Oxidative Stress, Alissa Laura Piekarski Aug 2012

Cell Bioenergetics In Leghorn Male Hepatoma Cells And Immortalized Chicken Liver Cells In Response To 4-Hydroxynonenal Induced Oxidative Stress, Alissa Laura Piekarski

Graduate Theses and Dissertations

Bioenergetic mechanisms responsible for ATP production are essential in carrying out maintenance and cell-specific functions. In this study, hepatocytes (liver cells) were used to test both endogenous and exogenous stress on cellular respiration. The secondary lipid peroxide, 4-hydroxynonenal (HNE), was used because it alters bioenergetics by increasing mitochondrial proton leak that attenuates mitochondrial radical production and, therefore, endogenous oxidative stress. The major objective of this study was to demonstrate effects of HNE-induced oxidative stress on avian hepatocyte bioenergetics. Various chemical which help enable the determination of oxygen (O2) consumption linked to ATP synthesis (oligomycin), maximal O2 consumption (FCCP), and proton …


Identification And Analysis Of A Novel Role For The Tousled-Like Kinase In Regulating Mitotic Spindle Dynamics, Jason R. Ford Aug 2012

Identification And Analysis Of A Novel Role For The Tousled-Like Kinase In Regulating Mitotic Spindle Dynamics, Jason R. Ford

Dissertations & Theses (Open Access)

Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes.

I discovered an unanticipated requirement for TLK-1 …


The Role Of Acetyl-Coa Carboxylase In The Survival Of Trypanosoma Brucei During Infection, Ciara Mcknight Aug 2012

The Role Of Acetyl-Coa Carboxylase In The Survival Of Trypanosoma Brucei During Infection, Ciara Mcknight

All Theses

This master's thesis focuses on how disruption of fatty acid metabolism affects both host adaptation and immune evasion in the deadly eukaryotic parasite, Trypanosoma brucei. In Chapter 1, I review the current literature on African trypanosomiasis, fatty acid synthesis, immune evasion, and lipid metabolism. In Chapter 2, I investigate how disruption of the fatty acid synthesis pathway affects the parasite's ability to evade the host immune defenses. When T. brucei acetyl-CoA carboxylase (TbACC) is knocked down by RNA interference (RNAi), fluid phase and receptor mediated endocytosis pathways are greatly affected, suggesting that fatty acid synthesis is necessary for both endocytic …


Uncovering Dual Roles For Perk Signaling During Experimentally Induced Pancreatitis, Elena Fazio Jun 2012

Uncovering Dual Roles For Perk Signaling During Experimentally Induced Pancreatitis, Elena Fazio

Electronic Thesis and Dissertation Repository

Pancreatitis is characterized by inappropriate activation of digestive enzyme

precursors, or zymogens, local and systemic inflammation, dysregulation of

cellular calcium (Ca2+), and induction of the unfolded protein response (UPR).

The UPR consists of three distinct pathways all of which are activated during

pancreatitis. However, the molecular roles of each remain unclear. The

protein kinase RNA (PKR)-like ER kinase (PERK) pathway reduces general

protein translation by phosphorylating eIF2!, and is activated within minutes

of initiating pancreatic damage. Microarray analysis carried out by our lab

revealed robust upregulation of the PERK pathways members Activating

Transcription Factor (ATF) 3 and stanniocalcin (STC) 2. …


The Embryonic Protein Nodal Supports Metastatic Phenotypes In Breast Cancer, Daniela F. Quail Jun 2012

The Embryonic Protein Nodal Supports Metastatic Phenotypes In Breast Cancer, Daniela F. Quail

Electronic Thesis and Dissertation Repository

Metastasis is the process by which tumour cells disseminate to distant organ sites. Aberrant expression of stem cell-associated proteins within tumours is associated with metastasis and poor patient prognosis. One example of a stem cell factor that is associated with cancer progression is Nodal, a member of the TGF-β superfamily. Nodal is normally limited to pluripotent stem cells during embryonic development, and to specialized dynamic adult tissue (such as the cycling endometrium), but is aberrantly re-expressed in multiple cancer types, including melanoma, glioma, prostate cancer, and pancreatic cancer. The central objective of this thesis is to determine the role of …


The Role Of Argininosuccinate Synthase Serine 328 Phosphorylation In Nitric Oxide Production, Ricci Haines Jun 2012

The Role Of Argininosuccinate Synthase Serine 328 Phosphorylation In Nitric Oxide Production, Ricci Haines

USF Tampa Graduate Theses and Dissertations

Until recently, the main mechanism of argininosuccinate synthase (AS) regulation was described to exist mainly at the level of transcription. Transcriptional regulation of AS has been shown to be coordinate with eNOS in response to shear stress, hypoxia, tumor necrosis factor á (TNF-á), and PPAR ã agonist troglitizone. However, it is now understood that one level of NO regulation is cellular control of arginine availability to eNOS via post-translational modifications of AS such as phosphorylation. The purpose of this investigation was to determine under what conditions AS is phosphorylated at S328, identify the pathway that AS phosphorylation at S328 plays …


Create The Scene And Watch The Show Unfold: Following Vegetative To Embryonic Developmental Transitions By Over-Expressing Lec2 In Leaves Of Arabidopsis Thaliana, Mistianne Feeney Jun 2012

Create The Scene And Watch The Show Unfold: Following Vegetative To Embryonic Developmental Transitions By Over-Expressing Lec2 In Leaves Of Arabidopsis Thaliana, Mistianne Feeney

Electronic Thesis and Dissertation Repository

During seed development, the lytic vacuole (LV) is replaced by a protein storage vacuole (PSV) which specializes in accumulating seed storage proteins (SSPs). As seed protein reserves are mobilized upon germination, the PSV is once again replaced by the LV which takes on different roles in vegetative tissues. Cellular events occurring during these developmental transitions are not well understood, particularly, the transition between vacuole types. This research investigates whether PSVs can exist in leaves. To study vacuole transitions in leaves, an Arabidopsis thaliana line over-expressing the LEAFY COTYLEDON2 (LEC2) transcription factor was used. LEC2 is a master regulator of embryogenesis …


Identification And Characterization Of The Arabidopsis Homolog Of The Yeast Trex-2 Complex, Gang Tian May 2012

Identification And Characterization Of The Arabidopsis Homolog Of The Yeast Trex-2 Complex, Gang Tian

Electronic Thesis and Dissertation Repository

Nuclear pore complexes (NPCs) are vital to nuclear-cytoplasmic communication in eukaryotes. The yeast Thp1-Sac3-Cdc31-Sus1 complex, also known as the TREX-2 complex, is anchored to the NPC via the nucleoporin Nup1, and is essential for mRNA export. In this study, the Arabidopsis homolog of the yeast TREX-2 complex was discovered. Physical and functional evidence support the identification of the Arabidopsis orthologs of the yeast Thp1 and Nup1. Of three Sac3 Arabidopsis homologs, two are putative TREX-2 components. Surprisingly, none are required for mRNA export as is the yeast Sac3. Physical association with TREX-2 was observed for the two Cdc31 homologs, but …


Target Recognition And Competitive Synaptogenesis In The Drosophila Giant Fiber System, Jason Joseph Hill May 2012

Target Recognition And Competitive Synaptogenesis In The Drosophila Giant Fiber System, Jason Joseph Hill

Open Access Dissertations

The development of complex neural networks relies on a careful balance of environmental cues to guide and shape both ends of the eventual connection. However, the correct wiring of circuits whose components share molecular profiles depends on a more elaborate phenomenon, competition. Despite being highly studied, there is still a lack of understanding as to the mechanism that allows molecularly identical cells to form exclusive connections with their targets. To address this complex question, we turned to a simple circuit within the genetically tractable fly. Responsible for the escape reflex, the Giant Fiber System is comprised of bilaterally symmetrical axons …


Characterization Of The Function Of The Azospirillum Brasilense Che1 Chemotaxis Pathway In The Regulation Of Chemotaxis, Cell Length And Clumping, Amber Nicole Bible May 2012

Characterization Of The Function Of The Azospirillum Brasilense Che1 Chemotaxis Pathway In The Regulation Of Chemotaxis, Cell Length And Clumping, Amber Nicole Bible

Doctoral Dissertations

Azospirillum brasilense is a gram-negative alphaproteobacterium that lives in the soil where it colonizes the root surfaces of cereals and grasses. The genome of A. brasilense has recently been sequenced and shown to possess four different chemotaxis-like operons. This dissertation project focused on characterizing the Che1 chemotaxis-like signal transduction pathway, which was initially implicated in regulation of the chemotaxis behavior. Deletions of individual genes within the Che1 pathway did not exhibit a null chemotaxis phenotype, leading us to investigate the role of this pathway in the lifestyle of A. brasilense and the mechanism(s) by which it functions. We have used …


Role Of Trp Channels In Mediating The Calcium Signaling Response Of Brain Endothelial Cells To Mechanical Stretch, Jonathan Berrout May 2012

Role Of Trp Channels In Mediating The Calcium Signaling Response Of Brain Endothelial Cells To Mechanical Stretch, Jonathan Berrout

Dissertations & Theses (Open Access)

Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular …


Genome-Wide Identification Of Conditionally Essential Genes In Salmonella Typhimurium Using Tn-Seq Method, Anita Khatiwara May 2012

Genome-Wide Identification Of Conditionally Essential Genes In Salmonella Typhimurium Using Tn-Seq Method, Anita Khatiwara

Graduate Theses and Dissertations

ABSTRACT

As more whole genome sequences become available, there is an increasing need for high-throughput methods that link genes to phenotypes and facilitate discovery of new gene functions. The objective of this study was to develop a high-throughput method to study gene functions in bacteria and use this method to study gene functions of S. enterica serotype Typhimurium (S. Typhimurium) under various environmental conditions encountered during its life cycle. Chapter I of this dissertation reviews the history and evolution of functional genomics in bacteria with focus on Salmonella, along with the recent techniques available. Chapter II, deals with the development …


Identification And Characterization Of Distinct Populations Of Clonogenic Bone Marrow Stromal Cells Capable Of Transferring The Hematopoietic Microenvironment In Vivo And Supporting Lt-Hscs In Vitro, Colby Suire May 2012

Identification And Characterization Of Distinct Populations Of Clonogenic Bone Marrow Stromal Cells Capable Of Transferring The Hematopoietic Microenvironment In Vivo And Supporting Lt-Hscs In Vitro, Colby Suire

Dissertations & Theses (Open Access)

Bone marrow (BM) stromal cells are ascribed two key functions, 1) stem cells for non-hematopoietic tissues (MSC) and 2) as components of the hematopoietic stem cell niche. Current approaches studying the stromal cell system in the mouse are complicated by the low yield of clonogenic progenitors (CFU-F). Given the perivascular location of MSC in BM, we developed an alternative methodology to isolate MSC from mBM. An intact ‘plug’ of bone marrow is expelled from bones and enzymatically disaggregated to yield a single cell suspension. The recovery of CFU-F (1917.95+199) reproducibly exceeds that obtained using the standard BM flushing technique (14.32+1.9) …


Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin, Kedryn K. Baskin May 2012

Regulation Of Protein Degradation In The Heart By Amp-Activated Protein Kinase, Kedryn K. Baskin, Kedryn K. Baskin

Dissertations & Theses (Open Access)

The degradation of proteins by the ubiquitin proteasome system is essential for cellular homeostasis in the heart. An important regulator of metabolic homeostasis is AMP-activated protein kinase (AMPK). During nutrient deprivation, AMPK is activated and intracellular proteolysis is enhanced through the ubiquitin proteasome system (UPS). Whether AMPK plays a role in protein degradation through the UPS in the heart is not known. Here I present data in support of the hypothesis that AMPK transcriptionally regulates key players in the UPS, which, under extreme conditions can be detrimental to the heart. The ubiquitin ligases MAFbx /Atrogin-1 and MuRF1, key regulators of …


Syntaxin 6- And Microtubule- Mediated Intracellular Trafficking Contributes To Golgi And Nuclear Translocation Of Egfr, Yi Du May 2012

Syntaxin 6- And Microtubule- Mediated Intracellular Trafficking Contributes To Golgi And Nuclear Translocation Of Egfr, Yi Du

Dissertations & Theses (Open Access)

Receptor-mediated endocytosis is well known for its degradation and recycling trafficking. Recent evidence shows that these cell surface receptors translocate from cell surface to different cellular compartments, including the Golgi, mitochondria, endoplasmic reticulum (ER), and the nucleus to regulate physiological and pathological functions. Although some trafficking mechanisms have been resolved, the mechanism of intracellular trafficking from cell surface to the Golgi is not yet completed understood. Here we report a mechanism of Golgi translocation of EGFR in which EGF-induced EGFR travels to the Golgi via microtubule (MT)-dependent movement by interacting with dynein and fuses with the Golgi through syntaxin 6 …


Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas May 2012

Electrospun Polycaprolactone Nanofiber Scaffolds For Tissue Engineering, Andreas Haukas

Graduate Theses and Dissertations

Stem cell and tissue engineering offer us with a unique opportunity to research and develop new therapies for treating various diseases that are otherwise incurable using traditional medicines. However, development of these new therapies replies upon the establishment of in vitro cell culture and differentiation systems that mimic in vivo microenvironments required for cell-cell and cell-ECM interaction. The development of these cell culture systems depends upon the identification of appropriate biomaterials and cell sources. Biomaterials should be carefully selected and fabricated into scaffolds for supporting cell growth and differentiation. In this study, we explored the fabrication of 3D electrospun nanofiber …


Interactions Of Nitric Oxide And Superoxide Pathways In Hyperglycemic Endothelial Cells, Steven Clay Rogers May 2012

Interactions Of Nitric Oxide And Superoxide Pathways In Hyperglycemic Endothelial Cells, Steven Clay Rogers

Graduate Theses and Dissertations

Cardiovascular complications arising from diabetic hyperglycemia represents one of the leading causes of death and greatest public health challenges of modern societies. Despite state-of-the-art glucose control, diabetic patients remain at a markedly increased risk of cardiovascular disease. The loss of endothelial function (the development of diabetic endothelial dysfunction) has been implicated in the development of numerous diabetic cardiovascular diseases. The endothelial cell produces many vasoactive substances, hormones and cytoprotective biological factors. Endothelial cells are also involved in and affected by the initiation of inflammatory responses through the release and interaction of cytokines and other immune system molecules. Therefore, regulation of …