Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell Biology

Trials And Tribulations Of Humanizing Mice For Cancer Research, Brittney Ruedlinger, Steven Warsof, Eric Feliberti, Mary Beth Hughes, Ayobami ‘Edwin’ Oshin, Chunqi Jiang, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe Apr 2021

Trials And Tribulations Of Humanizing Mice For Cancer Research, Brittney Ruedlinger, Steven Warsof, Eric Feliberti, Mary Beth Hughes, Ayobami ‘Edwin’ Oshin, Chunqi Jiang, Brittany P. Lassiter, Siqi Guo, Stephen J. Beebe

The Graduate School Posters

Cancers are aggressive, evasive, and ruthless killers, claiming millions of lives every year. Cancers are heterogeneous and there is often no single, clearly defined problem as they harness and manipulate a multitude of fundamental mechanisms at the very essence of life. To investigate these mechanisms and vet potential interventive therapies, humanized mice offer a unique model as a prelude to the use of nanosecond pulse stimulation (NPS), a pulse power technology applying nanosecond duration, high electric field pulses, to ablate human tumors. Immunodeficient mouse strains, NSG and NSG-SGM3, were engrafted with human immune cells and human tumors, which would allow …


Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe Apr 2021

Cyclophilin D Is A Sensor Of Nano-Pulse Stimulation, Brittney Ruedlinger, Bani Hani Maisoun, Lucas Potter, Nicola Lai, Stephen J. Beebe

The Graduate School Posters

Nano-Pulse Stimulation (NPS), a pulsed power-derived technology, stimulates structural and functional changes in plasma membranes and cellular organelles. NPS induces a Ca2+ influx and opening of the mitochondrial permeability transition pore (mPTP) that dissipates the mitochondrial membrane potential (ΔΨm) and, when sustained, induces regulated cell death. Here we show that in rat cardiomyoblasts (H9C2) cyclophilin D (CypD) is a mitochondrial sensor for NPS as defined by observations that loss of ΔΨm is Ca2+ and mitochondrial reactive oxygen species (mROS) dependent and cyclosporin A (CsA)-sensitive, which are diagnostic qualities for effects on CypD and the mPTP. …


Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …


Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman Apr 2020

Npgreat: Hybrid Assembly Of Human Subtelomeres With The Use Of Nanopore And Linked-Read Datasets, Eleni Adam, Desh Ranjan, Harold Riethman

College of Sciences Posters

The telomeres are vitally important regions that are located at the tips of the chromosomes. Their dysfunction, caused by length shortening can lead to senescent cells, which in turn cause age-related diseases, including cancer. The subtelomeres, located next to the telomeres, possess the critical role of regulating the adjacent telomere lengths. Even after many years of research, human subtelomeres have proven to be very hard to assemble due to their morphology. In order to overcome these problems, the hybrid assembly method we develop utilizes two of the latest available types of data, which complement each other: Linked-Reads and ultralong Nanopore …