Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 25 of 25

Full-Text Articles in Cell Biology

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova Jan 2023

Identification Of Proteins Involved In Cell Membrane Permeabilization By Nanosecond Electric Pulses (Nsep), Giedre Silkuniene, Uma Mangalanathan, Alessandra Rossi, Peter A. Mollica, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

The study was aimed at identifying endogenous proteins which assist or impede the permeabilized state in the cell membrane disrupted by nsEP (20 or 40 pulses, 300 ns width, 7 kV/cm). We employed a LentiArray CRISPR library to generate knockouts (KOs) of 316 genes encoding for membrane proteins in U937 human monocytes stably expressing Cas9 nuclease. The extent of membrane permeabilization by nsEP was measured by the uptake of Yo-Pro-1 (YP) dye and compared to sham-exposed KOs and control cells transduced with a non-targeting (scrambled) gRNA. Only two KOs, for SCNN1A and CLCA1 genes, showed a statistically significant reduction in …


Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty Jun 2022

Resolving The Repression Pathway Of Virulence Gene Hila In Salmonella, Alexandra King, Lon Chubiz Phd, Brenda Pratte, Lauren Daugherty

Undergraduate Research Symposium

Salmonella is a relatively abundant, virulent species of bacteria that is most known for spreading gastrointestinal diseases through food. These illnesses result in approximately 1.35 million infections, including over 25,000 hospitalizations each year, in the U.S. alone (CDC.gov). As antibiotic resistance becomes an increasingly urgent public health problem, the importance of developing alternative treatment methods is only becoming more crucial. One of the genes responsible for this virulence is known as hilA. HilA is the main transcriptional regulator of Salmonella Pathogenicity Island-1 gene (UniProt). SPI-1 plays an important role in the invasion of Salmonella into epithelial cells. The proteins encoded …


Feasibility Of Tubulin As A Control For Gene Expression Following Transfection In Mouse Monocyte/Macrophage-Like Cells, Ankita Chabra Apr 2022

Feasibility Of Tubulin As A Control For Gene Expression Following Transfection In Mouse Monocyte/Macrophage-Like Cells, Ankita Chabra

Honors Program Theses and Research Projects

Transfection, which is the ability to modify host cells’ genetic content, has broad application in studying normal cellular processes, molecular mechanism of disease and gene therapy. There are several transfection techniques, and all require either a control or a reference gene. Commonly used controls for transfection experiments are housekeeping genes, which maintain expression for a given cell/tissue, experimental conditions, and treatment. However, recent research has uncovered that expression levels of housekeeping genes may vary depending on the gene, cell type and experimental conditions. A growing body of evidence demonstrates that housekeeping genes are inadequate internal standards for measuring gene expression …


Developing An Electroporation Method For Transforming Streptomyces Nymphaeiformis, Heather Knott, Stephen Baron Apr 2022

Developing An Electroporation Method For Transforming Streptomyces Nymphaeiformis, Heather Knott, Stephen Baron

Honors Projects

Streptomyces species are notoriously difficult to transform. Streptomyces nymphaeiformis is no different, so a method of electroporation was used to attempt to transform the cells. Multiple growth stages were used in order to alter the degree of development of the cell wall. The procedure did not kill the cells, but the cells were not transformed. Due to the lack of transformation with S. nymphaeiformis, transformation was attempted on two other Streptomyces strains, S. lividans and S. coelicolor. Neither was successfully transformed to thiostrepton (tsr) resistance, nor did they grow on a plate lacking thiostrepton. One possibility for the …


Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau Jul 2020

Secretion Of Proteins And Antibody Fragments From Transiently Transfected Endothelial Progenitor Cells, Loree Heller, Reynald Thinard, Melanie Chevalier, Sezgi Arpag, Yu Jing, Ruth Greferath, Richard Heller, Claude Nicolau

Bioelectrics Publications

In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood-brain barrier (BBB) breakdown. After intravenous or intra-arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti-beta-amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti-beta-amyloid Fab protein functions in beta-amyloid aggregate solubilization.


Development And Validation Of Gene Delivery Methods For ​Crassostrea Virginica, Adrienne N. Tracy Jan 2020

Development And Validation Of Gene Delivery Methods For ​Crassostrea Virginica, Adrienne N. Tracy

Honors Theses

The Eastern oyster (Crassostrea virginica) is an important part of the East Coastal USA economy because aquaculture creates jobs. Sadly, the oysters are under constant threat due to increasing pollution, red tides, and diseases. Bivalves, and oysters in particular, are also becoming potential model organisms in medical research. With the sequencing of the oyster genome, scientists are focusing on deciphering the function of the predicted genes. However, the limited number of molecular and cellular tools available makes functional annotation of the genome challenging. A consistent, replicable gene delivery system needs to be developed to assess gene function and understand the …


Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem Jan 2019

Intratumoral Delivery Of Plasmid Il12 Via Electroporation Leads To Regression Of Injected And Noninjected Tumors In Merkel Cell Carcinoma, Shailender Bhatia, Natalie V. Longino, Natalie J. Miller, Rima Kulikauskas, Jayasri G. Iyer, Dafina Ibrani, Astrid Blom, David R. Byrd, Upendra Parvathaneni, Christopher Twitty, Jean S. Campbell, Mai H. Le, Sharron Gargosky, Robert H. Pierce, Richard Heller, Adil Daud, Paul Nghiem

Bioelectrics Publications

Purpose: Interleukin-12 (IL12) promotes adaptive type I immunity and has demonstrated antitumor efficacy, but systemic administration leads to severe adverse events (AE), including death. This pilot trial investigated safety, efficacy, and immunologic activity of intratumoral delivery of IL12 plasmid DNA (tavo) via in vivo electroporation (i.t.-tavo-EP) in patients with Merkel cell carcinoma (MCC), an aggressive virus-associated skin cancer.

Experimental Design: Fifteen patients with MCC with superficial injectable tumor(s) received i.t.-tavo-EP on days 1, 5, and 8 of each cycle. Patients with locoregional MCC (cohort A, N = 3) received one cycle before definitive surgery in week 4. …


Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori Jan 2019

Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied By Immunogenic Cell Death In Murine Models Of Lymphoma And Colorectal Cancer, Alessandra Rossi, Olga N. Pakhomova, Peter A. Mollica, Maura Casciola, Uma Mangalanathan, Andrei G. Pakhomov, Claudia Muratori

Bioelectrics Publications

Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of …


Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier Jan 2018

Asymmetric Patterns Of Small Molecule Transport After Nanosecond And Microsecond Electropermeabilization, Esin B. Sözer, C. Florencia Pocetti, P. Thomas Vernier

Bioelectrics Publications

Imaging of fluorescent small molecule transport into electropermeabilized cells reveals polarized patterns of entry, which must reflect in some way the mechanisms of the migration of these molecules across the compromised membrane barrier. In some reports, transport occurs primarily across the areas of the membrane nearest the positive electrode (anode), but in others cathode-facing entry dominates. Here we compare YO-PRO-1, propidium, and calcein uptake into U-937 cells after nanosecond (6 ns) and microsecond (220 µs) electric pulse exposures. Each of the three dyes exhibits a different pattern. Calcein shows no preference for anode- or cathode-facing entry that is detectable with …


Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Detection Of Ubiquitination On Syk And Documenting Syk Stability, Izabela Mazur, Wen Horng Wang, Robert J. Geahlen Aug 2015

Detection Of Ubiquitination On Syk And Documenting Syk Stability, Izabela Mazur, Wen Horng Wang, Robert J. Geahlen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Post-translational modifications regulate the activities of proteins important to numerous diseases. Spleen Tyrosine Kinase (Syk) is particularly interesting to researchers because it modifies many targets and plays multiple roles in regulating cells in our bodies and its abnormal modifications may contribute to cancer, Alzheimer’s disease and allergies. In an attempt to study these modifications of Syk, we first looked at detecting ubiquitination on Syk protein. Ubiquitin, a small 8 kDa molecule, attaches to lysine residues on protein. The attachment of ubiquitin to Syk may cause Syk to either propagate signals onwards to activate other proteins or signal it to undergo …


Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier Jan 2015

Introduction To Fifth Special Issue On Electroporation-Based Technologies And Treatments, Damijan Miklavčič, Lluis M. Mir, P. Thomas Vernier

Bioelectrics Publications

This special issue of the Journal of Membrane Biology contains reports on recent developments in the field of electroporation by participants in the International Workshop and Postgraduate Course on Electroporation-Based Technologies and Treatments held in November 2014 in Ljubljana. This was the eighth session of what is now an annual event, first organized in 2003.


Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov Jan 2015

Picosecond To Terahertz Perturbation Of Interfacial Water And Electropermeabilization Of Biological Membranes, P. Thomas Vernier, Zachary A. Levine, Ming-Chak Ho, Shu Xiao, Iurii Semenov, Andrei G. Pakhomov

Bioelectrics Publications

Non-thermal probing and stimulation with subnanosecond electric pulses and terahertz electromagnetic radiation may lead to new, minimally invasive diagnostic and therapeutic procedures and to methods for remote monitoring and analysis of biological systems, including plants, animals, and humans. To effectively engineer these still-emerging tools, we need an understanding of the biophysical mechanisms underlying the responses that have been reported to these novel stimuli. We show here that subnanosecond (≤500 ps) electric pulses induce action potentials in neurons and cause calcium transients in neuroblastoma-glioma hybrid cells, and we report complementary molecular dynamics simulations of phospholipid bilayers in electric fields in which …


Cellular Regulation Of Extension And Retraction Of Pseudopod-Like Blebs Produced By Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin, Andrei G. Pakhomov Jan 2014

Cellular Regulation Of Extension And Retraction Of Pseudopod-Like Blebs Produced By Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin, Andrei G. Pakhomov

Bioelectrics Publications

Recently we described a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells exposed to nanosecond pulsed electric field (nsPEF). In Ca2+ -free buffer such exposure initiates formation of pseudopod-like blebs (PLBs), protrusive cylindrical cell extensions that are distinct from apoptotic and necrotic blebs. PLBs nucleate predominantly on anode-facing cell pole and extend toward anode during nsPEF exposure. Bleb extension depends on actin polymerization and availability of actin monomers. Inhibition of intracellular Ca2+ , cell contractility, and RhoA produced no effect on PLB initiation. Meanwhile, inhibition of WASP by wiskostatin causes dose-dependent suppression of PLB growth. Soon after …


New Types Of Morpho-Physiological Changes In Cells Exposed To Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin Jul 2013

New Types Of Morpho-Physiological Changes In Cells Exposed To Nanosecond Pulsed Electric Field, Mikhail A. Rassokhin

Theses and Dissertations in Biomedical Sciences

Exposure of cells to a pulsed electric field (PEF) is the basis of multiple techniques and treatments. Nanosecond pulsed electric field (nsPEF) poses unique characteristics to induce subtle cellular effects while preserving cell integrity. Improving understanding of the mechanisms triggered by nsPEF in cells inspires new applications for the nanosecond pulse technology. Although many effects of nsPEF remain unknown, they can be inferred from morpho-physiologic changes, or cell reshaping, that accompany nsPEF exposure. During the exposure cells undergo reshaping that is manifested in swelling and diffuse blebbing. Recently we identified two new distinct forms of reshaping, pseudopod-like blebbing and microvesiculation, …


Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov Jan 2013

Recruitment Of The Intracellular Ca2+ By Ultrashort Electric Stimuli: The Impact Of Pulse Duration, Iurii Semenov, Shu Xiao, Olga N. Pakhomova, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond-duration electric stimuli are distinguished by the ability to permeabilize intracellular membranes and recruit Ca2+ from intracellular stores. We quantified this effect in non-excitable cells (CHO) using ratiometric Ca2+ imaging with Fura-2. In a Ca2+-free medium, 10-, 60-, and 300-ns stimuli evoked Ca2+ transients by mobilization of Ca2+ from the endoplasmic reticulum. With 2 mM external Ca2+, the transients included both extra- and intracellular components. The recruitment of intracellular Ca2+ increased as the stimulus duration decreased. At the threshold of 200–300 nM, the transients were amplified by calcium-induced calcium release. We …


Nano- And Micro-Second Electrical Pulsing Of B16-F10 Mouse Melanoma Cells: Plasma Membrane And Sub-Cellular Organelle Changes, Yiling Chen Apr 2012

Nano- And Micro-Second Electrical Pulsing Of B16-F10 Mouse Melanoma Cells: Plasma Membrane And Sub-Cellular Organelle Changes, Yiling Chen

Theses and Dissertations in Biomedical Sciences

High electric field-treated cells are permeable to molecular dye through either opening of pores in the plasma membrane or other unknown processes which can disturb the membrane in an organized way. However, direct morphological evidence is lacking and responses of intracellular organelles are not clear. We used traditional chemical fixatives and biochemical techniques to capture cell membrane and organelle changes immediately after pulsing with high voltage electric field application. Different pulse durations, nanosecond (ns) and microsecond (µs), and field magnitudes, 60 kV/cm and 1.2 kV/cm, were applied to mouse melanoma B16-F10 cells. Two different ns durations (60 and 300 ns) …


Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang Apr 2012

Nonosecond Pulsed Electric Field Induced Changes In Dielectric Properties Of Biological Cells, Jie Zhuang

Electrical & Computer Engineering Theses & Dissertations

Nanosecond pulsed electric field induced biological effects have been a focus of research interests since the new millennium. Promising biomedical applications, e.g. tumor treatment and wound healing, are emerging based on this principle. Although the exact mechanisms behind the nanosecond pulse-cell interactions are not completely understood yet, it is generally believed that charging along the cell membranes (including intracellular membranes) and formation of membrane pores trigger subsequent biological responses, and the number and quality of pores are responsible for the cell fate. The immediate charging response of a biological cell to a nanosecond pulsed electric field exposure relies on the …


Electric Field Exposure Triggers And Guides Formation Of Pseudopod-Like Blebs In U937 Monocytes, Mikhail A. Rassokhin, Andrei G. Pakhomov Jan 2012

Electric Field Exposure Triggers And Guides Formation Of Pseudopod-Like Blebs In U937 Monocytes, Mikhail A. Rassokhin, Andrei G. Pakhomov

Bioelectrics Publications

We describe a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells stimulated by nanosecond pulsed electric field (nsPEF). In contrast to "regular," round-shaped blebs, which are often seen in response to cell damage, pseudopod-like blebs (PLBs) formed as longitudinal membrane protrusions toward anode. PLB length could exceed the cell diameter in 2 min of exposure to 60-ns, 10-kV/cm pulses delivered at 10-20 Hz. Both PLBs and round-shaped nsPEF-induced blebs could be efficiently inhibited by partial isosmotic replacement of bath NaCl for a larger solute (sucrose), thereby pointing to the colloid-osmotic water uptake as the principal driving force for bleb …


Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov Jan 2012

Oxidative Effects Of Nanosecond Pulsed Electric Field Exposure In Cells And Cell-Free Media, Olga N. Pakhomova, Vera A. Khorokhorina, Angela M. Bowman, Raminta Rodaitė-Riševičienė, Gintautas Saulis, Shu Xiao, Andrei G. Pakhomov

Bioelectrics Publications

Nanosecond pulsed electric field (nsPEF) is a novel modality for permeabilization of membranous structures and intracellular delivery of xenobiotics. We hypothesized that oxidative effects of nsPEF could be a separate primary mechanism responsible for bioeffects. ROS production in cultured cells and media exposed to 300-ns PEF (1–13 kV/cm) was assessed by oxidation of 2′, 7′-dichlorodihydrofluoresein (H2DCF), dihidroethidium (DHE), or Amplex Red. When a suspension of H2DCF-loaded cells was subjected to nsPEF, the yield of fluorescent 2′,7′dichlorofluorescein (DCF) increased proportionally to the pulse number and cell density. DCF emission increased with time after exposure in nsPEF-sensitive Jurkat …


Stochastic Calculations For Computation Of Radiation Effects And Cell Survivability Under Voltage Pulsing, Madhuri Ganapathiraju Apr 2008

Stochastic Calculations For Computation Of Radiation Effects And Cell Survivability Under Voltage Pulsing, Madhuri Ganapathiraju

Electrical & Computer Engineering Theses & Dissertations

Statistical computations are an important tool for the analysis of stochastic phenomena and processes that are characterized by variability. Biological systems (e.g., cells, tissues etc.) are perfect examples wherein response to a given external stimulus can be varied and needs to be adequately considered. The Monte Carlo method of analysis has now been recognized as the most effective way of treating stochastic variability.

This thesis uses Monte Carlo based simulations to probe two problems that require the quantification and modeling of effects caused by energy deposition onto biological matter from external sources. One problem involves the probabilistic study of the …


Theoretical Predictions Of Electromechanical Deformation Of Cells Subjected To High Voltages For Membrane Electroporation, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Theoretical Predictions Of Electromechanical Deformation Of Cells Subjected To High Voltages For Membrane Electroporation, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

An electromechanical analysis based on thin-shell theory is presented to analyze cell shape changes in response to external electric fields. This approach can be extended to include osmotic-pressure changes. Our calculations demonstrate that at large fields, the spherical cell geometry can be significantly modified, and even ellipsoidal forms would be inappropriate to account for the deformation. Values of the surface forces obtained from our calculations are in very good agreement with the 1–10 mN/m range for membrane rupture reported in the literature. The results, in keeping with reports in the literature, demonstrate that the final shape depends on membrane thickness. …


Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson Jan 2002

Improved Energy Model For Membrane Electroporation In Biological Cells Subjected To Electrical Pulses, R. P. Joshi, Q. Hu, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

A self-consistent model analysis of electroporation in biological cells has been carried out based on an improved energy model. The simple energy model used in the literature is somewhat incorrect and unphysical for a variety of reasons. Our model for the pore formation energy E(r) includes a dependence on pore population and density. It also allows for variable surface tension, incorporates the effects of finite conductivity on the electrostatic correction term, and is dynamic in nature. Self-consistent calculations, based on a coupled scheme involving the Smoluchowski equation and the improved energy model, are presented. It is shown that E(r) becomes …


Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach Jan 2002

Mechanism For Membrane Electroporation Irreversibility Under High-Intensity, Ultrashort Electrical Pulse Conditions, R. P. Joshi, K. H. Schoenbach

Bioelectrics Publications

An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), …


Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson Jan 2001

Self-Consistent Simulations Of Electroporation Dynamics In Biological Cells Subjected To Ultrashort Electrical Pulses, R. P. Joshi, Q. Hu, R. Aly, K. H. Schoenbach, H. P. Hjalmarson

Bioelectrics Publications

The temporal dynamics of electroporation of cells subjected to ultrashort voltage pulses are studied based on a coupled scheme involving the Laplace, Nernst-Plank, and Smoluchowski equations. A pore radius dependent energy barrier for ionic transport, accounts for cellular variations. It is shown that a finite time delay exists in pore formation, and leads to a transient overshoot of the transmembrane potential Vmem beyond 1.0 V. Pore resealing is shown to consist of an initial fast process, a 10−4s delay, followed by a much slower closing at a time constant of about 10 −1s. This establishes a …