Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Cell Biology

Examining Pi3k-Signaling-Dependent Regulation Of Lens Organelle Free Zone Formation Via Immunolocalization And Immunoblotting In Chick Embryos, Rifah Gheyas, A. Sue Menko Sep 2023

Examining Pi3k-Signaling-Dependent Regulation Of Lens Organelle Free Zone Formation Via Immunolocalization And Immunoblotting In Chick Embryos, Rifah Gheyas, A. Sue Menko

Computational Medicine Center Faculty Papers

The elimination of lens organelles during development, required for mature lens function, is an autophagy-dependent mechanism induced through suppression of PI3K signaling. Here, we present a protocol for investigating the signaling pathways responsible for induction of the formation of this lens organelle free zone. We describe steps for preparation of lens organ culture and use of signaling pathway inhibitors. We then detail procedures for analyzing their impact using both confocal microscopy imaging of immunolabeled lens cryosections and immunoblot approaches. For complete details on the use and execution of this protocol, please refer to Gheyas et al. (2022).


Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker Jul 2023

Fibrosis-The Tale Of H3k27 Histone Methyltransferases And Demethylases, Morgan D. Basta, Svetlana Petruk, Alexander Mazo, Janice L. Walker

Department of Biochemistry and Molecular Biology Faculty Papers

Fibrosis, or excessive scarring, is characterized by the emergence of alpha-smooth muscle actin (αSMA)-expressing myofibroblasts and the excessive accumulation of fibrotic extracellular matrix (ECM). Currently, there is a lack of effective treatment options for fibrosis, highlighting an unmet need to identify new therapeutic targets. The acquisition of a fibrotic phenotype is associated with changes in chromatin structure, a key determinant of gene transcription activation and repression. The major repressive histone mark, H3K27me3, has been linked to dynamic changes in gene expression in fibrosis through alterations in chromatin structure. H3K27-specific homologous histone methylase (HMT) enzymes, Enhancer of zeste 1 and 2 …


Enhancement Of Tki Sensitivity In Lung Adenocarcinoma Through M6a-Dependent Translational Repression Of Wnt Signaling By Circ-Fbxw7, Kai Li, Zi-Yang Peng, Rui Wang, Xiang Li, Ning Du, Da-Peng Liu, Jia Zhang, Yun-Feng Zhang, Lei Ma, Ye Sun, Shou-Ching Tang, Hong Ren, Yi-Ping Yang, Xin Sun Jul 2023

Enhancement Of Tki Sensitivity In Lung Adenocarcinoma Through M6a-Dependent Translational Repression Of Wnt Signaling By Circ-Fbxw7, Kai Li, Zi-Yang Peng, Rui Wang, Xiang Li, Ning Du, Da-Peng Liu, Jia Zhang, Yun-Feng Zhang, Lei Ma, Ye Sun, Shou-Ching Tang, Hong Ren, Yi-Ping Yang, Xin Sun

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

BACKGROUND: Tyrosine kinase inhibitors (TKIs) that specifically target mutational points in the EGFR gene have significantly reduced suffering and provided greater relief to patients with lung adenocarcinoma (LUAD). The third-generation EGFR-TKI, Osimertinib, has been successfully employed in clinical treatments to overcome resistance to both original and acquired T790M and L858R mutational points. Nevertheless, the issue of treatment failure response has emerged as an insurmountable problem.

METHODS: By employing a combination of multiple and integrated approaches, we successfully identified a distinct population within the tumor group that plays a significant role in carcinogenesis, resistance, and recurrence. Our research suggests that addressing …


Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce May 2023

Zinc Treatment Reverses And Anti-Zn-Regulated Mirs Suppress Esophageal Carcinomas In Vivo, Louise Fong, Kay Huebner, Ruiyan Jing, Karl Smalley, Christopher R Brydges, Oliver Fiehn, John Farber, Carlo M Croce

Department of Pathology, Anatomy, and Cell Biology Faculty Papers

Esophageal squamous cell carcinoma (ESCC) is a deadly disease with few prevention or treatment options. ESCC development in humans and rodents is associated with Zn deficiency (ZD), inflammation, and overexpression of oncogenic microRNAs: miR-31 and miR-21. In a ZD-promoted ESCC rat model with upregulation of these miRs, systemic antimiR-31 suppresses the miR-31-EGLN3/STK40-NF-κB-controlled inflammatory pathway and ESCC. In this model, systemic delivery of Zn-regulated antimiR-31, followed by antimiR-21, restored expression of tumor-suppressor proteins targeted by these specific miRs: STK40/EGLN3 (miR-31), PDCD4 (miR-21), suppressing inflammation, promoting apoptosis, and inhibiting ESCC development. Moreover, ESCC-bearing Zn-deficient (ZD) rats receiving Zn medication showed a 47% …