Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Cell Biology

Antimicrobial Activity Of Bacterial Virus Components: An Empirical Investigation Of The Killing Capacity Of Toxins From Burkholderia, Kyle Walny Dec 2021

Antimicrobial Activity Of Bacterial Virus Components: An Empirical Investigation Of The Killing Capacity Of Toxins From Burkholderia, Kyle Walny

Honors Projects

Given the growing issue in healthcare of antibiotic resistance, effective and safe alternative treatment methods are required. One of these possible alternative treatment methods is bacteriotoxins including bacteriocins and tailocins. The focus of this study is a bacteriotoxin from Burkholderia cenocepacia (ATCC 25608), which was induced for toxin using a modified UV light induction procedure and tested against a variety of Pseudomonas and Burkholderia for its killing capacity. Various other pathogenic strains were then induced with UV light and tested. The results showed that the toxin from ATCC 25608 was very effective against most of the Burkholderia tested and warrants …


Evaluating The Biological Activities Of Novel Histone Deacetylase Inhibitors (Hdaci) In Adherent And Nonadherent Tumor Cell Lines, Samer Alanani Dec 2021

Evaluating The Biological Activities Of Novel Histone Deacetylase Inhibitors (Hdaci) In Adherent And Nonadherent Tumor Cell Lines, Samer Alanani

Theses and Dissertations

Epigenetic dysregulations are linked to many human diseases including neurodegenerative disorders, immunodeficiencies, cardiac disease, and most notably cancer. Changes in the mechanisms of histone modifications have been recognized as hallmarks of carcinogenesis. One of these modifications is histone acetylation which is regulated by the activities of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The reversible actions of these enzymes govern the acetylome and maintain its balance allowing for activation and repression of gene transcription. However, aberrant overexpression of HDACs in certain tumors is associated with decreased levels of transcription leading to tumor progression and survival. Hence, small-molecule histone deacetylase inhibitors …


Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale Dec 2021

Engineering Fluorescently Labeled Human Fibroblast Growth Factor One Mutants And Characterizing Their Photophysics Properties Towards Designing Fret Assays, Mamello Mohale

Graduate Theses and Dissertations

Human fibroblast growth factor one (hFGF1) belongs to a family of 22 FGF members produced by fibroblast cells. Cell signaling during physiological processes of angiogenesis and wound healing occurs when hFGF1 binds to its receptor (FGFR). However, when heterogenous homeostasis is not maintained, fibroblast cells exhibit excessive proliferation which can lead to a myriad of cancers. smFRET is an ultrasensitive distant dependent (1-10 nm) technique capable of resolving such heterogeneity in structural dynamics and binding affinities (Kd). Therefore, we successfully designed and characterized fluorescently labeled hFGF1 tracers which span the visible light region of the electromagnetic spectrum for use in …


Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim May 2021

Reconstituting The Cyanobacterial Circadian Clock In Vitro, Pyong Hwa Kim

Dissertations

Cyanobacteria are photosynthetic organisms that are known to be responsible for oxygenating Earth’s early atmosphere. Having evolved to ensure optimal survival in the periodic light/dark cycle on this planet, their genetic codes are packed with various tools, including a sophisticated biological timekeeping system. Among the cyanobacteria is Synechococcus elongatus PCC 7942, the simplest clock-harboring organism with a powerful genetic tool that enabled the identification of its intricate timekeeping mechanism. The three central oscillator proteins—KaiA, KaiB, and KaiC—drive the 24 h cyclic gene expression rhythm of cyanobacteria, and the "ticking" of the oscillator can be reconstituted inside a test tube just …


Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez May 2021

Developing A Microdialysis Sampling-Based Biofilm/Macrophage Co-Culture Model, Alda Diaz Perez

Graduate Theses and Dissertations

The host immune system and bacterial cells are known to interact during the human lifetime. Bacteria secrete a wide variety of signaling molecules, known as quorum sensing (QSC) molecules, that modulate the host immune system. While immune-biofilm interactions involve this chemical signaling network, the mechanisms through which this occurs are not well understood. This work aimed to develop a new method that can be used not only in vitro settings but also in vivo. The microdialysis sampling technique has widely been used in in vitro and in vivo settings in humans, mice, and rats for the collection of neuropeptides, cytokines, …


Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard Apr 2021

Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard

Senior Honors Theses

Anthraquinones are aromatic organic compounds that have multiple applications in the biomedical field. Some anthraquinone-based compounds are used as fluorophores to contrast cell nuclei while others act as chemotherapeutic agents. However, there are not many fluorescent anthraquinone cell stains currently available. In this study, commercially available anthraquinone dyes, in addition to other dye families and compounds, were reviewed for their unique properties, advantages, and drawbacks. The development and characterization of three novel anthraquinone fluorophores revealed promising photophysical characteristics, like large Stokes shifts. One of the compounds, RBS3, was chosen for fixed and live cell staining and exhibited desirable biomedical properties. …


Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal Apr 2021

Influence Of Monovalent And Divalent Ions In The Conformational Change Of Caspase-Cleaved Par-4 (Cl-Par-4) Tumor Suppressor Protein, Krishna K. Raut, Komala Ponniah, Steven M. Pascal

College of Sciences Posters

Prostate apoptosis response-4 (Par-4) is a pro-apoptotic tumor suppressor protein. We have shown that this 38 kDa full-length Par-4 (Fl-Par-4) protein is predominantly intrinsically disordered in vitro. In vivo, Par-4 is cleaved by caspase-3 at Asp-131 to generate a 24 kDa functionally active cleaved Par-4 (cl-Par-4) fragment. The cl-Par-4 protein inhibits the NF-κB-mediated cell survival pathway and causes selective apoptosis in various tumor cells. Our laboratory is interested in how the disorder-order balance within Fl-Par-4 and cl-Par-4 may be related to the balance between cell survival and cell death. Currently, we are using biophysical techniques such as circular …


Modeling The Bidirectional Glutamine/ Ammonium Conversion Between Cancer Cells And Cancer-Associated Fibroblasts, Peter Hinow, Gabriella Pinter, Wei Yan, Shizhen Emily Wang Jan 2021

Modeling The Bidirectional Glutamine/ Ammonium Conversion Between Cancer Cells And Cancer-Associated Fibroblasts, Peter Hinow, Gabriella Pinter, Wei Yan, Shizhen Emily Wang

Mathematical Sciences Faculty Articles

Like in an ecosystem, cancer and other cells residing in the tumor microenvironment engage in various modes of interactions to buffer the negative effects of environmental changes. One such change is the consumption of common nutrients (such as glutamine/Gln) and the consequent accumulation of toxic metabolic byproducts (such as ammonium/NH4). Ammonium is a waste product of cellular metabolism whose accumulation causes cell stress. In tumors, it is known that it can be recycled into nutrients by cancer associated fibroblasts (CAFs). Here we present monoculture and coculture growth of cancer cells and CAFs on different substrates: glutamine and ammonium. …


Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus Jan 2021

Activity Of Saccharomyces Cerevisiae By Single Entity Electrochemistry, John Lutkenhaus

Graduate Research Posters

According to the Centers of Disease Control and Prevention, antibiotics decrease in effectiveness as bacteria gain resistance for previously treatable illnesses. Currently, antibiotic susceptibility is typically carried out via the Kirby-Bauer method. Even with automation, this process requires two incubation periods so a less time-consuming technique is desirable. Single entity electrochemistry (SEE) detects changes in current when collisions of individual particles at an ultramicroelectrode (UME) are linked with an electrochemical event. Our group has obtained step-like and spike-like responses of Saccharomyces cerevisiae at the UME surface as a result of adsorption and desorption, respectively. This response is due to the …


Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha Jan 2021

Investigation Of Multidrug Efflux Transporter Acrb In Escherichia Coli: Assembly, Degradation And Dynamics, Prasangi Irosha Rajapaksha

Theses and Dissertations--Chemistry

The Resistant Nodulation Division (RND) super family member, tripartite AcrA-AcrB-TolC efflux pump, is a major contributor in conferring multidrug-resistance in Escherichia coli. The structure of the pump complex, and drug translocation by functional rotation mechanism have been widely studied. Despite of all these data, the dynamics of the assembly process of the pump and AcrB during functional rotation in the process of drug efflux remains poorly understood. My thesis focuses on understanding the pump assembly process, dynamics of AcrB in functional rotation mechanism, and also investigate the mechanism of degradation of AcrB facilitated by a C-terminal ssrA tag.

In the …


Impact Of Hemodynamic Vortex Spatial And Temporal Characteristics On Analysis Of Intracranial Aneurysms, Kevin W. Sunderland Jan 2021

Impact Of Hemodynamic Vortex Spatial And Temporal Characteristics On Analysis Of Intracranial Aneurysms, Kevin W. Sunderland

Dissertations, Master's Theses and Master's Reports

Subarachnoid hemorrhage is a potentially devastating pathological condition in which bleeding occurs into the space surrounding the brain. One of the prominent sources of subarachnoid hemorrhage are intracranial aneurysms (IA): degenerative, irregular expansions of area(s) of the cerebral vasculature. In the event of IA rupture, the resultant subarachnoid hemorrhage ends in patient mortality occurring in ~50% of cases, with survivors enduring significant neurological damage with physical or cognitive impairment. The seriousness of IA rupture drives a degree of clinical interest in understanding these conditions that promote both the development and possible rupture of the vascular malformations. Current metrics for the …