Open Access. Powered by Scholars. Published by Universities.®

Cell Biology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Cell Biology

Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren Aug 2021

Exploring The Intrinsic And Extrinsic Factors That Regulate Breast Cancer Cell Dormancy, Qihao Ren

Arts & Sciences Electronic Theses and Dissertations

Breast cancer can recur in patients months to decades after initial diagnosis and treatment. There is mounting evidence that dormant breast disseminated tumor cells (DTCs) exist in distant organs, whose reactivation results in cancer recurrence. However, the mechanisms that control tumor cell dormancy remain poorly understood, making it difficult to predict which patients will recur and develop cancer recurrence. Unfortunately, the extreme rarity of dormant DTCs has been the major obstacle to their study. To overcome this challenge, we developed an efficient system to isolate and study rare dormant tumor cells from metastatic organs. Using this system and single cell …


Mimicking The Effect Of Prolactin On Stat3/Stat5 Activity In Breast Cancer, Jennifer N. Barbuto, Sarah R. Walker Jan 2021

Mimicking The Effect Of Prolactin On Stat3/Stat5 Activity In Breast Cancer, Jennifer N. Barbuto, Sarah R. Walker

Honors Theses and Capstones

Signal transducers and activators of transcription (STAT) 3 and 5 are commonly constitutively activated in breast cancer. STAT5 can outcompete STAT3 and reduce cell proliferation and metastasis. STAT5 activation is stimulated by prolactin, a natural hormone that can be harmful at high levels. The aim of this study is to identify some possible previously developed drugs that mimic the effect of prolactin and STAT5 without the added risk in MDA-MB231 breast cancer cells. Using the CLUE database query app and STAT5 up- and downregulation signatures, three drugs (X, K, and M) were chosen based on their similarity in signatures to …


Induction Of Ampk Activation By N,N'-Diarylurea Fnd-4b Decreases Growth And Increases Apoptosis In Triple Negative And Estrogen-Receptor Positive Breast Cancers, Jeremy Johnson, Piotr G. Rychahou, Vitaliy M. Sviripa, Heidi L. Weiss, Chunming Liu, David S. Watt, B. Mark Evers Mar 2019

Induction Of Ampk Activation By N,N'-Diarylurea Fnd-4b Decreases Growth And Increases Apoptosis In Triple Negative And Estrogen-Receptor Positive Breast Cancers, Jeremy Johnson, Piotr G. Rychahou, Vitaliy M. Sviripa, Heidi L. Weiss, Chunming Liu, David S. Watt, B. Mark Evers

Markey Cancer Center Faculty Publications

Purpose

Triple negative breast cancer (TNBC) is the most lethal and aggressive subtype of breast cancer. AMP-activated protein kinase (AMPK) is a major energy regulator that suppresses tumor growth, and 1-(3-chloro-4-((trifluoromethyl)thio)phenyl)-3-(4-(trifluoromethoxy)phenyl)urea (FND-4b) is a novel AMPK activator that inhibits growth and induces apoptosis in colon cancer. The purpose of this project was to test the effects of FND-4b on AMPK activation, proliferation, and apoptosis in breast cancer with a particular emphasis on TNBC.

Materials and methods

(i) Estrogen-receptor positive breast cancer (ER+BC; MCF-7, and T-47D), TNBC (MDA-MB-231 and HCC-1806), and breast cancer stem cells were treated with FND-4b for 24h. …


Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith Jan 2017

Mammary Extracellular Matrix Directs Differentiation Of Testicular And Embryonic Stem Cells To Form Functional Mammary Glands In Vivo, Robert D. Bruno, Jodie M. Fleming, Andrea L. George, Corinne A. Boulanger, Pepper Schedin, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

Previously, we demonstrated the ability of the normal mammary microenvironment (niche) to direct non-mammary cells including testicular and embryonic stem cells (ESCs) to adopt a mammary epithelial cell (MEC) fate. These studies relied upon the interaction of transplanted normal MECs with non-mammary cells within the mammary fat-pads of recipient mice that had their endogenous epithelium removed. Here, we tested whether acellular mammary extracellular matrix (mECM) preparations are sufficient to direct differentiation of testicular-derived cells and ESCs to form functional mammary epithelial trees in vivo. We found that mECMs isolated from adult mice and rats were sufficient to redirect testicular derived …


A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith Jan 2014

A Potential Mechanism For Extracellular Matrix Induction Of Breast Cancer Cell Normality, Robert D. Bruno, Gilbert H. Smith

School of Medical Diagnostics & Translational Sciences Faculty Publications

Extracellular matrix proteins from embryonic mesenchyme have a normalizing effect on cancer cells in vitro and slow tumor growth in vivo. This concept is suggestive of a new method for controlling the growth and spread of existing cancer cells in situ and indicates the possibility that extracellular proteins and/or embryonic mesenchymal fibroblasts may represent a fertile subject for study of new anti-cancer treatments.


Combating Resistance To Epidermal Growth Factor Recpetor Inhibitors In Triple Negative Breast Cancer, Julie Marie Madden Jan 2014

Combating Resistance To Epidermal Growth Factor Recpetor Inhibitors In Triple Negative Breast Cancer, Julie Marie Madden

Wayne State University Dissertations

Triple negative breast cancer (TNBC) patients suffer from a highly malignant and aggressive cancer that lacks an effective targeted therapeutic. Although many TNBCs, both in vitro and in vivo, have increased expression of epidermal growth factor receptor (EGFR), EGFR targeted inhibitors, such as gefitinib (GEF), have yet to demonstrate efficacy. Using mass spectrometry to identify pathways that remain activated in the presence of GEF, we found that components of the mTOR signaling pathway remain phosphorylated. While inhibiting mTOR with temsirolimus (TEM) decreased mTOR signaling, EGFR signaling pathways remained activated and the TNBC cell lines continued to proliferate. However, dual treatment …